
DISQUO: A Distributed 100% Throughput
Algorithm for a Buffered Crossbar Switch

†Shunyuan Ye, ‡Yanming Shen, †Shivendra Panwar
†Department of Electrical and Computer Engineering, Polytechnic Institute of NYU

‡School of Computer Science and Technology, Dalian University of Technology, China
e-mail: sye02@students.poly.edu, syanming@photon.poly.edu, panwar@catt.poly.edu

Abstract—The promise of a buffered crossbar switch - a
crossbar switch with a packet buffer at each crosspoint - is that
it can provide good delay performance with much less complex,
practical scheduling algorithms. With today’s technology, it is
now possible to implement it in a single chip. Thus it has
attracted great attention recently. Though simple distributed
algorithms can achieve 100% throughput under uniform traffic,
so far there are no distributed algorithms which can achieve
100% throughput under general admissible arrival patterns.
In this paper, we propose a distributed scheduling algorithm
which achieves 100% throughput for any admissible Bernoulli
arrival traffic. To the best of our knowledge, this is the first
distributed algorithm which can achieve this. The algorithm is
called DISQUO: DIStributed QUeue input-Output scheduler. Our
simulation results also show that DISQUO can provide good delay
performance for different traffic patterns.

I. INTRODUCTION

The fast growing traffic demand in the Internet requires
that packet switches should be simple, fast and efficient. Due
to the memory speed limit, most current switches use input
queuing (IQ) or combined input and output queuing (CIOQ),
with a bufferless crossbar switching fabric. The scheduler must
find a matching between inputs and outputs. Such switches
require centralized, sometimes complex, algorithms to achieve
good performance, such as maximal [1] and maximum weight
matching [2]. Maximum weight matching can achieve 100%
throughput for any admissible arrival traffic, but it is not
practical to implement due to its high complexity. Maximal
matching, on the other hand, cannot achieve as high a through-
put as maximum weight matching. A number of practical
iterative algorithms have been proposed, such as iSLIP [3]
and DRRM [4]. iSLIP uses multiple iterations to converge to a
maximal matching. DRRM can achieve 100% throughput only
under i.i.d. and uniform traffic. EMHW [5] has been proved
to stabilize the system for any admissible traffic, but it is still
centralized and has a complexity of O(logN).

With today’s ASIC technology, it is now possible to add
small buffers at each crosspoint inside the crossbar. This makes
the buffered crossbar or combined input and crossbar queueing
(CICQ) switch a much more attractive architecture since its
scheduler is potentially much simpler. Each input(output)
knows the state of all crosspoint buffers to(from) which it
can send(receive) packets. The input and output schedulers

This work is supported by the National Science Foundation and the New
York State Center for Advanced Technology in Telecommunications (CATT).

can be independent. First, each input picks a crosspoint buffer
to send a packet to. Then, each output picks a crosspoint
buffer to transmit a packet from, as shown in Fig. 1. A
centralized scheduler is not needed since the processing can
be distributed at each input and output. It has been shown
that simple algorithms such as round robin at both the inputs
and outputs (RR-RR) [6], or longest queue first at the inputs,
and round robin at the outputs (LQF-RR) [7], can provide
100% throughput under uniform traffic. SQUISH and SQUID
[8] can achieve 100% throughput for any admissible traffic,
but these are centralized algorithms which do not scale with
the increase in the number of ports due to the communication
complexity and latency. Thus, it is impossible to implement
these algorithms in large scale high-speed switching systems.

Recently, it has been shown that CSMA-like algorithms
[9], [10] can achieve the maximum throughput in wireless
ad hoc networks in continuous time systems. These ideas
were extended to discrete time systems by Ni and Srikant in
[11]. Inspired by the CSMA-like algorithms, in this paper, we
propose a distributed algorithm in buffered crossbar switches
that can stabilize the system under any admissible Bernoulli
traffic matrix. The scheduling algorithm is called DISQUO:
DIStributed QUeue input-Output scheduler. With DISQUO,
no message passing is required. Each input only uses its
local queue information and the previous time slot schedule
to make its scheduling decision. We prove the stability of
the system and evaluate the performance of DISQUO by
running extensive simulations. To the best of our knowledge,
this is the first distributed algorithm which can achieve 100%
throughput under any admissible Bernoulli traffic in buffered
crossbar switches. The simulation results also show that it can
provide good delay performance as compared to output-queued
switches, under different types of traffic.

The rest of paper is organized as follows. We first briefly
describe the buffered crossbar switch in Sec. II. DISQUO is
presented in Sec. III, and an example is provided to illustrate
its operation. We derive the stationary distribution of the
system in Sec. IV, and prove its stability in Sec. V. Simulations
results are presented in Sec. VI to show its delay performance.

II. CROSSPOINT BUFFERED SWITCH

An N ×N switch is shown in Fig. 1. We assume fixed size
packet(cell) switching. Variable size packets can be segmented
into cells before switching and reassembled at the output ports.

Fig. 1: Buffered Crossbar Switch

There are virtual output queues (VOQs) at the inputs to prevent
head-of-line blocking. Each input maintains N VOQs, one for
each output. Let V OQij represent the VOQ at input i for
output j. Let Qij(n) denote the queue length of V OQij at
time n. Let (i, j) represent the crosspoint between input i and
output j. Note that a VOQ corresponds to a crosspoint.

Each crosspoint has a buffer of size K . But K = 1 is
sufficient for our algorithm, and most current implementations
are constrained in the size of K . We will therefore assume
that K = 1 in the following. Let CBij denote the buffer of
the crosspoint between input i and output j. Bij(n) ∈ {0, 1}
denotes the occupancy of CBij at time n.

A schedule can be represented by S(n) = [SI(n), SO(n)].
SI(n) = [SI

ij(n)] is the input schedule. Each input port can
only transmit at most one cell at each time slot. Thus the input
schedule is subject to the following constraints:

∑

j

SI
ij(n) ≤ 1, SI

ij(n) = 0 if Bij(n) = 1. (1)

SO(n) = [SO
ij (n)] is the output schedule. It has to satisfy

the following constraints:
∑

i

SO
ij (n) ≤ 1, SO

ij (n) = 0 if Bij(n) = 0. (2)

Let λij represent the arrival rate of traffic between input i
and output j. We assume that the arrival process is Bernoulli.

Definition 1: An arrival process is said to be admissible if
it satisfies:

∑

j

λij < 1, and
∑

i

λij < 1. (3)

III. THE DISQUO SCHEDULING ALGORITHM

In this section, we first define the notation used in our
algorithm. We then present the DISQUO scheduling algorithm.
To help present the idea, we first describe the basic concept
of DISQUO and then show how it can be implemented in
a distributed manner by utilizing the state of the crosspoint
buffers. An example is then given to illustrate how it works.

A. Notation

Definition 2: A DISQUO schedule X(n) is an N × N
matrix, where Xij(n) ∈ {0, 1}, and

∑

i Xij(n) ≤ 1,
∑

j Xij(n) ≤ 1.
With some abuse of notation, we also use X to represent

a set, and write (i, j) ∈ X if Xij = 1. Note that a DISQUO

schedule X has the property that if Xij = 1, then ∀i′ 6= i,
Xi′j = 0 and ∀j′ 6= j, Xij′ = 0. We define these crosspoints
as its neighbors.

Definition 3: For a crosspoint (i, j), its neighbors are de-
fined as:

N (i, j) = {(i′, j) or (i, j′) | ∀i′ 6= i, ∀j′ 6= j} (4)

A DISQUO schedule X then has the following property:
Property 1: If (i, j) ∈ X, ∀(k, l) ∈ N (i, j), (k, l) /∈ X.
We also define the DISQUO schedule to have the following

properties:
Property 2: At each time slot, when a DISQUO schedule is

generated, each input and output port determine their schedules
by observing the following rules:

• For input i, when Xij(n) = 1, if Qij(n) > 0 and Bij(n−
1) = 0, then SI

ij(n) = 1. Otherwise, SI
ij(n) = 0.

• For output j, if Xij(n) = 1 and Bij(n) > 0, SO
ij (n) = 1.

Property 3: For an input i, if ∀j, Xij = 0, then it is referred
to as a free input. A free input port can randomly pick an
eligible crosspoint to serve, i.e. it can transfer a packet to any
free crosspoint buffer.

Property 4: For an output port j, if ∀i, Xij = 0, then it is
a free output. A free output can randomly pick a non-empty
crosspoint to serve.

Let X represent the set of all DISQUO schedules.

B. The Basic DISQUO Algorithm

The initial DISQUO schedule X(0) can be any schedule
that satisfies Definition 2. For a switch of size N , there are
N ! distinct matchings. A Hamiltonian walk schedule H(n)
visits each of the N ! distinct matchings exactly once during N !
slots. A distributed Hamiltonian walk can be simply generated
with a time complexity of O(1) [12]. Note that H(n) is also
a DISQUO schedule.

The DISQUO schedule X(n) then is generated by merging
X(n − 1) and H(n) as follows:

Basic DISQUO Scheduling Algorithm

◦ ∀ (i, j) /∈ H(n):
(a) Xij(n) = Xij(n − 1).

◦ For (i, j) ∈ H(n):
- If (i, j) ∈ X(n − 1):

(b) Xij(n) = 1 with probability pij ;
(c) Xij(n) = 0 with probability pij = 1 − pij .

- If (i, j) /∈ X(n − 1), and ∀(k, l) ∈ N (i, j),
Xkl(n − 1) = 0, then:

(d) Xij(n) = 1 with probability pij ;
(e) Xij(n) = 0 with probability pij = 1 − pij .

- Else, if (i, j) /∈ X(n − 1), and ∃(k, l) ∈ N (i, j)
such that Xkl(n − 1) = 1:

(f) Xij(n) = 0.
pij is a concave function (to be specified later) of the queue

size Qij such that when Qij = 0, pij = 0. Note that in
our algorithm, Xij(n) can change only when the V OQij is
selected by H(n).

C. Distributed Implementation

In the algorithm, each input i only needs to keep track
of the DISQUO schedule in the previous slot, i.e. for which
output j was Xij(n − 1) = 1. Similarly, each output only
needs to keep track of for which input i was Xij(n− 1) = 1.
Since the algorithm is distributed, there is no message passing
between inputs and outputs. DISQUO has to make sure that
if Xij(n) = 1, both input i and output j are aware of this.
Then the inputs and outputs can keep a consistent view of the
DISQUO schedule. The DISQUO algorithm works as follows.

Input Scheduling Decisions

At each input port i, assume (i, j) is selected by H(n).
◦ If there exists a j′, with Xij′ (n − 1) = 1:

- If j = j′, (i, j) ∈ X(n − 1) and (i, j) ∈ H(n):
(a) Xij(n) = 1 with probability pij ;
(b) Xij(n) = 0 with probability pij = 1 − pij .

- Else,
(c) Xij(n) = 0.

◦ Else, if there is no j′ such that Xij′ (n − 1) = 1, then
input i is a free input:

- If ∀(k, l) ∈ N (i, j), Xkl(n − 1) = 0 (We will
explain later how an input port can learn this):

(d) Xij(n) = 1 with probability pij ;
(e) Xij(n) = 0 with probability pij = 1 − pij .

- Else,
(f) Xij(n) = 0.

Output Scheduling Decisions

Each output port j has to learn the scheduling decision
made by the input. Assume (i, j) is selected by H(n).
◦ If there exists an i′, with Xi′j(n − 1) = 1:

- If i = i′, (i, j) ∈ X(n − 1) and (i, j) ∈ H(n).
As shown above, input i may change Xij from 1 to 0.
Therefore, output j has to observe the crosspoint buffer
to learn the input’s decision.

(a) If input i transmits a packet to CBij at the
beginning of time n, Xij(n) = 1

(b) Otherwise, Xij(n) = 0.
- Else,

(c) Xij(n) = Xij(n − 1) = 0
◦ Else, if there is no i′ such that Xi′j(n − 1) = 1, then
output j is free:

- (i) If the buffer at crosspoint (i, j) is empty and
input i sends a packet to CBij at the beginning of time
n; (ii) or, if the buffer is not empty, output j is required
by DISQUO to transmit this packet from CBij at time
n, and if then input i sends a packet to CBij at the
beginning of time n+1, output j can update its schedule
of time n as:

(d) Xij(n) = 1.
- Else,

(e) Xij(n) = 0.

So in the algorithm, the inputs are making the scheduling

Fig. 2: An example

decisions and updating the DISQUO schedule based on H(n).
The output ports have to learn the inputs’ decisions. The key
point of DISQUO is that by observing crosspoint buffers, an
input and an output can learn each other’s decisions implicitly.
As stated in the algorithm, if a free input decides to set
Xij(n) = 1 from Xij(n − 1) = 0, it has to make sure
that output j was also free so that there does not exist any
(k, l) ∈ N (i, j) such that Xkl(n−1) = 1. The input can learn
whether output j was free or not by observing the crosspoint
buffer CBij . If it is served by output port j at time n, input
i learns that the output was free at time n − 1 and confirms
that ∀(k, l) ∈ N (i, j), Xkl(n − 1) = 0.

D. An Example

To help understand DISQUO, we give an illustrative exam-
ple here. Recall that the input actions are performed at the
beginning of each time slot and outputs transmit packets from
the crosspoint buffers before the end of each time slot.

(1) In Fig. 2(a), the DISQUO schedule is X(n − 1) =
{(1, 2), (2, 1)} and the Hamiltonian walk schedule is H(n)
= {(1, 1), (2, 3), (3, 2)}. For input 1, X12(n − 1) = 1 and
(1, 2) is not selected by H(n), so X12(n) = X12(n− 1) = 1.
Similarly, X21(n) = 1. Input 3 is free and since (3, 2) is
selected, it decides to send a packet to CB32 with probability
p32, and it will observe CB32 to see if output 2 is also free.
But output 2 is not free, thus the packet in CB32 will not be
transmitted. Input 3 can observe this by the end of time n.
Thus, X32(n) = 0. So the DISQUO schedule at time n is still
X(n) = {(1, 2), (2, 1)}.

(2) At time n + 1, H(n + 1) = {(1, 2), (2, 1), (3, 3)}. Both
(1, 2) and (2, 1) are selected by H(n + 1). So input 1 and
2 change their schedules with probability p12 = 1 − p12 and
p21 = 1 − p21. In the example, they both decide to change
their schedules and stop sending packets to CB12 and CB21.
Therefore, X12(n + 1) = 0 and X21(n + 1) = 0. Output 2
and output 1 can learn this by observing CB12 and CB21,
respectively. Input 3 is free and (3, 3) is selected by H(n+1).
So input 3 sends a packet to CB33 with probability p33. In
this example, input 3 does send a packet to CB33. Output 3

is free and it learns that X33(n + 1) = 1 by observing CB33.
Therefore output 3 transmits the packet from CB33 at time n,
which is observed by input 3 and it confirms that output 3 is
also free. Then the DISQUO schedule becomes X(n + 1) =
{(3, 3)}, as shown Fig. 2(d).

(3) At time n + 2, H(n + 2) = {(1, 1), (2, 3), (3, 2)}. Input
1 is free, and (1, 1) is selected by H(n + 2). So it sends a
packet to CB11 with probability p11. Output 1 is also free,
and it learns that X11(n + 2) = 1 by observing CB11. The
packet then is transmitted by output 1, and input 1 confirms
that output 1 is free. So, X11(n + 2) = 1. Input 2 is free
and since (2, 3) is selected by H(n + 2), it has to decide
whether to send a packet to CB23 or not with probability
p23. As we can see, input 2 decides not to send a packet to
CB23, therefore X23(n+2) = 0. (3, 3) is not in H(n+2), so
X33(n + 2) = X33(n + 1) = 1. The DISQUO schedule then
is X(n + 2) = {(1, 1), (3, 3)}.

IV. STATIONARY DISTRIBUTION

Lemma 1: If X(n − 1) ∈ X , then X(n) ∈ X .
Proof: As defined, X is a DISQUO schedule if and only

if ∀(i, j) such that Xij = 1: ∀(k, l) ∈ N (i, j), (k, l) /∈ X.
For any (i, j) such that Xij(n) = 1, it belongs to one of

those two cases below:
1) Xij(n − 1) = 1.
2) Xij(n − 1) = 0 and (i, j) ∈ H(n).
If Xij(n) = Xij(n − 1) = 1, ∀(k, l) ∈ N (i, j), Xkl(n −

1) = 0. According to the DISQUO algorithm, whether (k, l)
∈ H(n) or not, we have Xkl(n) = Xkl(n − 1) = 0.

If Xij(n) = 1 and Xij(n − 1) = 0, then (i, j) ∈ H(n).
According to the DISQUO algorithm, Xij can change from 0
to 1 only when ∀(k, l) ∈ N (i, j), Xkl(n−1) = 0. Since H(n)
is a DISQUO schedule, ∀(k, l) ∈ N (i, j), (k, l) /∈ H(n). Thus,
(k, l) has to keep the schedule of the previous slot unchanged.
Therefore, Xkl(n) = Xkl(n − 1) = 0.

For any (i, j) such that Xij(n) = 1, we have proved that
∀(k, l) ∈ N (i, j), Xkl(n) = 0. So X(n) ∈ X if X(n−1) ∈ X .
QED

Lemma 2: A DISQUO schedule X ∈ X can transit to a
schedule X′ in the next slot if and only if X ∪ X′ ∈ X .

Proof: (Necessity): Suppose that X ∪ X′ /∈ X . According
to the definition of DISQUO schedule, there exists at least one
(i, j) ∈ X∩X′ and (k, l) ∈ X∩X′ such that (k, l) ∈ N (i, j).
In a transition from X to X′, both (X ∩ X′) and (X ∩ X′)
change their states. According to the DISQUO scheduling
algorithm, a VOQ can change its scheduling decision only
when it is selected by H(n). Since both (i, j) and (k, l)
change their states, they should be both in H(n). But H(n) is
a DISQUO schedule generated by Hamiltonian walk, which
means if (i, j) ∈ H(n) and (k, l) ∈ N (i, j), (k, l) can not be
in H(n). Hence, the initial assumption leads to a contradiction.
So, a DISQUO schedule X ∈ X can not transit to a schedule
X′ when X ∪ X′ /∈ X .

(Sufficiency): Suppose that X′ is a DISQUO schedule such
that X ∪ X′ ∈ X . Since (X ∩ X′) ∪ (X ∩ X′) ⊆ X ∪ X′,
we then have (X ∩ X′) ∪ (X ∩ X′) ∈ X . Therefore, there

exists at least one H(n) such that (X ∩ X′) ∪ (X ∩ X′) ⊆
H(n). When X is the current DISQUO schedule and the H(n)
selected satisfies (X ∩ X′) ∪ (X ∩ X′) ⊆ H(n), following the
DISQUO algorithm, the system can make a transition to X′ if
both (X ∩ X′) and (X ∩ X′) decide to change their scheduling
decisions, and other selected elements in H(n) decide to keep
their schedules of the previous slot. This transition probability
is greater than 0, which we will define in Lemma 3. QED

Lemma 3: Suppose that X ∪ X′ ∈ X . Then the transition
probability from X to X′ is:

p(X, X′) =
∑

H:X4X′∈H

a(H)
∏

(i,j)∈X∩X
′

pij

∏

(k,l)∈X∩X′

pkl

•
∏

(u,v)∈X∩X′∩H

puv

∏

(x,y)∈H∩X∪X′∩N (X∪X′)

pxy,

(5)

where a(H) is the probability that H is selected (which is 1
N !),

and X4 X′ = (X ∩ X′) ∪ (X ∩X′).
Proof: Since X ∪ X′ ∈ X , according to Lemma 2, the

system can make a transition from X to X′. The transition
occurs only when the VOQs of the selected H satisfy the
conditions below:

1) For any (i, j) ∈ X∩X′: the VOQ is selected by H and
decides to change its scheduling decision from 1 to 0,
which happens with probability pij .

2) For any (k, l) ∈ X∩X′: the VOQ is selected by H and
decides to change its scheduling decision from 0 to 1,
which happens with probability pkl.

3) For any (u, v) ∈ X ∩ X′ ∩ H: the VOQ was in the
DISQUO schedule of previous time slot, and even
though selected by H it decides to keep its schedule,
which occurs with probability puv.

4) For any (x, y) ∈ H∩X ∪X′ ∩N (X): neither the VOQ
nor any of its neighbors was in the DISQUO schedule of
previous time slot, and though selected by H it decides
to keep its schedule, which occurs with probability pxy.
Since H is a DISQUO schedule and X ∩ X′ ∈ H, H ∩
N (X ∩ X′) = ∅. Thus H ∩ X ∪ X′ ∩ N (X) = H ∩
X ∪ X′ ∩N (X ∪ X′). We replace H∩X ∪ X′∩N (X)
by H ∩ X ∪X′ ∩ N (X ∪ X′) in Eq. (5) for the proof
of the stationary distribution in the following.

Since H is a DISQUO schedule, for any two VOQs in H,
they are not neighbors of each other. Therefore, they can make
the scheduling decisions independently. We then can multiply
the probabilities of all the four categories above, which leads
to the transition probability given by Eq. (5). QED

As we can see from Lemma 3, the DISQUO schedule X(n)
only depends on the previous time slot X(n-1), thus X(n-
1), X(n), X(n+1)· · · is a Markov chain. The state transition
probability is given in Eq. (5). So we can define the Markov
chain of the system based on the DISQUO schedule and will
derive its stationary distribution in the following.

Lemma 4: The Markov chain of the system is positive
recurrent.

Proof: Suppose that X is a DISQUO schedule, and it has
k non-zero elements: (i1, j1), (i2, j2) · · · (ik, jk) ∈ X. Let Xl
represent a DISQUO schedule which has l non-zero elements:
(i1, j1), (i2, j2) · · · (il, jl) ∈ Xl ⊆ X, 0 ≤ l ≤ k. We can see
that X0 = 0 and Xk = X. Since X is a DISQUO schedule,
Xl is also a DISQUO schedule and Xl−1 ∪ Xl = Xl ∈ X .
Therefore, the system can make a transition from Xl−1 to Xl
with positive probability, as we already proved in Lemma 3.
Hence, state X0 can reach any state X ∈ X with positive
probability in a finite number of steps and vice versa. Thus,
the Markov chain is positive recurrent. QED

Since the Markov chain is positive recurrent, it has a
unique stationary distribution. Let us associate each VOQ of
a switch with a non-negative weight wij(n) (i.e. wij(n) =
log(Qij(n))) at time n. We require that the weight function
satisfies the condition that when Qij(n) = 0, wij(n) = −∞.
Define the probability pij = ewij(n)

ewij(n)+1
, and pij = 0 when

Qij(n) = 0. We have the following result.
Lemma 5: The Markov chain of the system has the follow-

ing product-form stationary distribution:

π(X) =
1
Z

∏

(i,j)∈X

pij

pij
=

1
Z

∏

(i,j)∈X

ewij(n), (6)

where

Z =
∑

X∈X

∏

(i,j)∈X

pij

pij
=

∑

X∈X

∏

(i,j)∈X

ewij(n). (7)

Proof: If a state X can make a transition to X′, we can
check that the distribution in Eq. (6) satisfies the detailed
balance equation:

π(X)p(X,X′) = π(X′)p(X′,X), (8)

hence the Markov chain is reversible and Eq. (6) is the
stationary distribution (see [13], Theorem 1.2).

V. SYSTEM STABILITY

One of the most popular algorithms which has been proved
stable is the Maximum Weight Matching (MWM) algorithm.
The MWM algorithm selects a feasible schedule with the
maximum weight:

S∗(n) = argmax
S∈S

∑

(i,j)∈S

wij(n). (9)

The stability result has been shown both for bufferless cross-
bar switches and buffered crossbar switches [8]. Following the
DISQUO algorithm we presented in Sec. III, if Xij(n) = 1
and Qij(n) > 0, then Bij(n) = 1

(

if Bij(n−) = 0, since
Qij(n) > 0, input i will send a packet to CBij at the
beginning of n

)

, and thus SO
ij (n) = 1. A DISQUO schedule

is a feasible schedule in bufferless crossbar switches, and if
Xij(n) = 1 and Qij(n) > 0, one packet is transmitted from
input i to output j. Therefore, we can define the weight of a
DISQUO schedule as:

W (X) =
∑

i

∑

j

Xij(n)wij(n). (10)

For MWM, the result below has been established in [14].
Lemma 6: For a scheduling algorithm, if given any ε and

δ such that 0 ≤ ε, δ < 1, there exists a B > 0 such that the
scheduling algorithm satisfies the condition that in any time
slot n, with a probability greater than 1 − δ, the scheduling
algorithm can choose a feasible schedule S which satisfies the
following condition:

∑

(i,j)∈S(n)

wij(n) ≥ (1 − ε)
∑

(k,l)∈S∗(n)

wkl(n), (11)

whenever ||Q(n)|| ≥ B, where Q(n) = (Qij(n)) and
||Q(n)|| =

(
∑

i,j Q2
ij(n)

)1/2
. Then the scheduling algorithm

can stabilize the system.
Since we already derived the stationary distribution of the

Markov chain, we will prove the system stability using Lemma
6. Before the proof of Theorem 1, we first have to prove the
lemmas below.

Lemma 7: Suppose that T (·) is a function defined on a set
X . For any probability distribution µ on X , define the function:

F (µ, T (X)) = Eµ[T (X)] + H(µ), (12)

where H(µ) is the entropy function: −
∑

X∈X µ(X) log µ(X).
Then F (·) is uniquely maximized by the distribution:

µ∗(X) =
1
Z

exp(T (X)), (13)

where Z =
∑

X∈X exp(T (X)).
Proof: For any probability distribution µ, we have:

F (µ, T (X))
= Eµ[T (X)] + H(µ)

=
∑

X∈X

µ(X)T (X) −
∑

X∈X

µ(X) log µ(X)

=
∑

X∈X

µ(X)(log µ∗(X) + log Z) −
∑

X∈X

µ(X) log µ(X)

=
∑

X∈X

µ(X) log Z +
∑

X∈X

µ(X) log
µ∗(X)
µ(X)

≤ log Z
∑

X∈X

µ(X) + log
(

∑

X∈X

µ(X)
µ∗(X)
µ(X)

)

= log Z, (14)

with equality holding only when µ = µ∗. QED
Note that when T (X) = 0, the uniform distribution maxi-

mizes F (µ, 0), and we have:

F (µ, 0) = H(µ) ≤ log Z = log |X | (15)

where |X | is the size of X .
Lemma 8: Let W (·) be the weight function and W ∗(X)

the maximum weight. Define the set:

K = {X ∈ X : W (X) ≤ (1 − ε)W ∗(X)}. (16)

Then, we have:

π(K) ≤
log |X |

εW ∗(X)
(17)

0 0.2 0.4 0.6 0.8 1

0.1

1

10

100

1000

10000

100000

Load

D
el

ay

Uniform traffic

Bursty − DISQUO
Bursty − OQ
Bernoulli − DISQUO
Bernoulli − OQ

Fig. 3: Switch size N=32, uniform traffic

Proof: As shown in Eq. (6), for a schedule X ∈ X ,
its stationary distribution is: π(X) = 1

Z

∏

(i,j)∈X e(wij(n)) =
1
Z eW (X). According to Lemma 7, π maximizes F (µ, W (X)).

Let X∗ be the schedule which can give the maximum
weight. Let π′ be the distribution that assigns all probability
on X∗ such that:

π′(X) =
{

1 if X = X∗

0 otherwise

Then we have:

F (π′, W (X)) = Eπ′ [W (X)] + H(π′)
= W ∗(X) + H(π′)
≤ F (π, W (X)) = Eπ[W (X)] + H(π)
≤ W ∗(X)(1 − επ(K)) + H(π) (18)

Last step in Eq. (18) is using Eq. (17). So,

W ∗(X) + H(π′) ≤ W ∗(X)(1 − επ(K)) + H(π)
επ(K)W ∗(X) ≤ H(π) − H(π′) ≤ H(π) ≤ log |X |

π(K) ≤
log |X |

εW ∗(X)
(19)

Theorem 1: DISQUO can stabilize the system if the input
traffic is admissible.

Proof: For any δ > 0, we have π(K) < δ, if the maximum
weight satisfies the condition:

W ∗(X) >
N2 log 2

εδ
>

log |X |
εδ

. (20)

So, for any ε, δ > 0, there exists a B > 0 such that whenever
||Q(n)|| > B, Eq. (20) holds and then π(K) < δ. Hence
the scheduling algorithm can stabilize the system according
to Lemma 6.

VI. SIMULATIONS

In this section, we ran simulations for different scenarios
to determine the performance of DISQUO. We also study the
delay performance of the scheduling algorithm under different
traffic patterns, including uniform and non-uniform traffic with
Bernoulli and bursty arrivals. For bursty traffic, the burst length
is distributed over [1, 1000], following the truncated Pareto

0 0.2 0.4 0.6 0.8 1

0.1

1

10

100

1000

10000

100000

Load

D
el

ay

Lin−diagonal traffic

Bursty − DISQUO
Bursty − OQ
Bernoulli − DISQUO
Bernoulli − OQ

Fig. 4: Switch size N=32, lin-diagonal traffic

0 0.2 0.4 0.6 0.8 1

0.1

1

10

100

1000

10000

100000

Load

D
el

ay

Hotspot traffic

Bursty − DISQUO (w=0.5)
Bursty − OQ (w=0.5)
Bernoulli − DISQUO (w=0.25)
Bernoulli − DISQUO (w=0.5)
Bernoulli − DISQUO (w=0.75)
Bernoulli − OQ (w=0.75)

Fig. 5: Switch size N=32, hot-spot traffic

distribution:

P (l) =
c
lα

, l = 1, 2, ... , 1000, (21)

where l is the burst length, α is the Pareto parameter and c
is the normalization constant. In the simulations, α = 1.7, for
which the average burst length is about 11.6. All inputs are
equally loaded and we measure the packet delay.

A. Uniform Traffic

For uniform traffic, a new cell is destined with equal
probability to all output ports. Let λ represent the traffic load,
the arrival rate between input i and output j is λij = λ

N . The
delay performance of DISQUO under uniform Bernoulli and
bursty traffic is shown in Fig. 3. We can see that the packet
delay of DISQUO is very close to the output-queued switch
(OQ). It has been shown that under uniform traffic, even an
algorithm as simple as RR-RR can have a delay performance
close to an output-queued switch [6]. However, the RR-RR
algorithm cannot achieve 100% throughput when the traffic
is non-uniform. Therefore, we will study the performance of
DISQUO under non-uniform traffic next.

B. Non-uniform Traffic

We ran the simulations for the following traffic patterns:
• Lin-diagonal: Arrival rates at the same input differ

linearly, i.e, λi(i+j (mod N)) − λi(i+j+1 (mod N)) =
2λ/N(N + 1).

0 0.2 0.4 0.6 0.8 1

0.1

1

10

100

Load

D
el

ay

Hot−spot Traffic

N=16
N=32
N=64
N=128

Fig. 6: Impact of switch size, hot-spot traffic, ω = 0.5

• Hot-spot: For input port i, λii = ωλ and λij = (1 −
ω)λ/(N − 1), for i 6= j. We can get different traffic
patterns by varying the hot-spot factor ω.

The delay performance for lin-diagonal and hot-spot traffic
are shown in Fig. 4 and 5, respectively. We can see that under
Bernoulli traffic, the delay performance of DISQUO is still
very close to the output-queued switch. Packets have low delay
even when the load is as high as 0.99. Note that the RR-RR
algorithm can have a throughput of approximately only 85%
[6] under hotspot traffic. When the traffic arrival is bursty,
DISQUO has a delay a little larger than the output-queued
switch.

C. Impact of Switch Size

In this section, we will study the impact of switch size on
the delay performance. Generally, for input-queued switches,
the average delay increases linearly with the switch size. For
output-queued switches, delay is almost independent of the
size. Fig. 6 shows the delay performance of switches with
different sizes under hot-spot traffic, for which ω is 0.5. We
can see that, for Bernoulli traffic, the delay is almost the same
for different switch sizes. As the size increases, the delay even
decreases slightly. This shows that DISQUO is feasible for
large scale packet switches.

D. Impact of Buffer Size

If the buffer at each crosspoint increases to infinity, the
buffered crossbar switch is then equivalent to an output-queued
switch. So as we increase the buffer size, the average delay
will decrease and slowly converge to the delay of an output-
queued switch. As we already showed in previous simulation
results, the delay performance of the new algorithm with
buffer size 1 is already very close to that of an output-queued
switch. Therefore, by increasing the buffer size, we can only
get a very marginal improvement on the delay performance.
DISQUO can be easily modified for values of K > 1. Due
to space considerations, we will not define DISQUO with
K > 1 here. Fig. 7 shows the delay performance of DISQUO
with different buffer sizes, under hot-spot traffic. We can see
that the improvement is very small. Therefore, we only need
to implement a one-cell buffer at each crosspoint and still
provide good delay performance. This is crucial since current

0.7 0.75 0.8 0.85 0.9 0.95 1

1

10

Load

D
el

ay

Hotspot Traffic

K=1
K=4
K=8
K=16
Output−Queued

Fig. 7: Impact of buffer size, hot-spot traffic, ω = 0.5, N=32

technology limits the size of crosspoint buffers to a small
number.

VII. CONCLUSION

In this paper, we propose a distributed scheduling algorithm
(DISQUO) for buffered crossbar switch. We prove that it
can achieve 100% throughput under any admissible arrival
traffic with only a one-packet buffer at each crosspoint. Our
simulation results show that it can provide very good delay
performance under different traffic arrivals. The simulation
results also show that, by using DISQUO, packet delay is
very weakly dependent on the switch size, which means that
DISQUO can scale with the number of switch ports.

REFERENCES

[1] J. G. Dai and B. Prabhakar, “The Throughput of Data Switches with
and without Speedup,” in Proc. of IEEE INFOCOM, (Tel Aviv, Israel),
March 2000.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% Throughput in an Input-Queued Switch,” IEEE Transactions
on Communications, vol. 47, pp. 1260–1267, August 1999.

[3] N. Mckeown, “The iSLIP Scheduling Algorithm for Input-Queued
Switches,” IEEE/ACM Transactions on Networking, vol. 7, pp. 188–201,
April 1999.

[4] Y. Li, S. Panwar, and H. J. Chao, “On the Performance of a Dual Round-
Robin Switch,” in Proc. of IEEE INFOCOM, April 2001.

[5] Y. Li, S. Panwar, and H. J. Chao, “Exhaustive Service Matching Algo-
rithms for Input Queued Switches,” in Proc. of IEEE HPSR, (Phoenix,
AZ), April 2004.

[6] R. Rojas-Cessa, E. Oki, and H. J. Chao, “On the Combined Input-
Crosspoint Buffered Packet Switch with Round-Robin Arbitration,”
IEEE Transactions on Communications, vol. 53, pp. 1945–1951, Novem-
ber 2005.

[7] T. Javidi, R. Magill, and T. Hrabik, “A High Throughput Scheduling
Algorithm for a Buffered Crossbar Switch Fabric,” in Proc. of IEEE
ICC, (Helsinki, Finland), June 2001.

[8] Y. Shen, S. S. Panwar, and H. J. Chao, “Providing 100% Throughput in
a Buffered Crossbar Switch,” in Proc. of IEEE HPSR, (Brooklyn, New
York), May-June 2007.

[9] S. Rajagopalan and D. Shah, “Aloha That Works,” submitted, Nov. 2008.
[10] L. Jiang and J. Walrand, “A Distributed Algorithm for Optimal Through-

put and Fairness in Wireless Networks with a General Interference
Model,” submitted, June 2008.

[11] J. Ni and R. Srikant, “Distributed CSMA/CA Algorithms for Achieving
Maximum Throughput in Wireless Networks,” submitted, March 2009.

[12] P. Giaccone, B. Prabhakar, and D. Shah, “Toward Simple, High Perfor-
mance Schedulers for High-Aggregate Bandwidth Switches,” in Proc.
of IEEE INFOCOM, (New York), 2002.

[13] F. Kelly, Reversibility and Stochastic Networks. Wiley, 1979.
[14] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable Scheduling Policies

for Fading Wireless Channels,” IEEE/ACM Transactions on Networking,
vol. 13, pp. 411–424, April 2005.

	Introduction
	Crosspoint Buffered Switch
	The DISQUO Scheduling Algorithm
	Notation
	The Basic DISQUO Algorithm
	Distributed Implementation
	An Example

	Stationary Distribution
	System Stability
	Simulations
	Uniform Traffic
	Non-uniform Traffic
	Impact of Switch Size
	Impact of Buffer Size

	Conclusion
	References

