trrr R ANSACTIONS ON COMMUNICATIONS. VOL. 40. NO. 4. APRIT. 1992

765

Golden Ratio Scheduling for Flow Control
with Low Buffer Requirements

Shivendra S. Panwar, Member, IEEE, Thomas K. Philips, and Mon-Song Chen

Abstract—In this paper, we describe a method of flow control
that requires very few buffers to be allocated at each node to
virtual circuits (or sessions) that have to traverse many links.
Transmissions are scheduled using the Golden Ratio Policy of Itai
and Rosberg. We show that the buffer requirements of a session
grow at most logarithmically with the number of slots allotted
to it. As an immediate consequence, intra-network delays are
bounded.

I. INTRODUCTION

CONSIDER a network of computers (or nodes) intercon-
nected by transmission links (or edges) communicating
with each other via a store and forward mechanism. The virtual
circuit that is set up between two communicating processes
in distinct computers is called a session. Each link in the
network may carry traffic from hundreds of sessions, and each
session is allotted a share of the network’s capacity. The task
of allocating capacity to the sessions and controlling the entry
and forwarding of their messages is referred to as flow control.

In this paper we describe and analyze a flow control policy
based on time division multiple access (TDMA) that can
allocate capacity to sessions in any desired proportion. We
assume that the capacity of each link is the same. We further
assume that the time axis is slotted, and that messages can be
broken up into an integral number of constant length packets,
each of which can be transmitted in a slot. At each node
a transmission schedule is defined for each link over which
packets are to be transmitted. The transmission schedule is
a mapping from the set of all sessions that use a link onto
the set of all slots available on that link. The transmission
schedule on every link is periodic, i.e., if slot 4 is allotted to a
given session, then slot ¢ + N is allotted to the same session.
N is called the period of the schedule, and is the same for
every link. The transmission schedule is constructed using the
Golden Ratio Policy of Itai and Rosberg [8]. As the time axis
is slotted, and as not all the slots need to be preallocated to

Paper approved by the Editor for Communication Networks of the
IEEE Communication Society. Manuscript received January 15, 1989; revised
November 15, 1990. This work was supported in part by the New York
State Center for Advanced Technology in Telecommunications, Polytechnic
University, Brooklyn, NY 11201, and by the National Science Foundation,
under Grant NCR-8909719. This paper was presented in part at IEEE
GLOBECOM ’88, Hollywood, FL, November 28~December 1, 1988 and
at the Allerton Conference on Communication, Control, and Computing,
University of Illinois, Urbana-Champaign, IL, October 3-5, 1990.

S.S. Panwar is with the Department of Electrical Engineering and Computer
Science, Polytechnic University, Brooklyn, NY 11201,

T. K. Phillips and M.-S Chen are with IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598.

IEEE Log Number 9107309.

sessions, we believe that the Golden Ratio Policy will find use
as a flow and congestion control mechanism in Asynchronous
Transfer Mode (ATM) networks [1], [6], [11].

Slots are preassigned to sessions, and a slot is used if and
only if a packet from its preassigned session awaits transmis-
sion. Unassigned slots are not ever used. Consequently, the
service provided by the policy is circuit switching, even though
it may be implemented using packet switching technology.
While this causes slightly longer queueing delays at the
source, it has the important benefit of greatly reducing buffer
requirements and obviating the need for window flow control.
At each node, buffers are preallocated to sessions. As the
number of buffers required at a node is upper bounded by
the sum of the buffer requirements for each session, this gives
us an upper bound on the number of buffers required at every
node.

As the schedule is periodic, we restrict our attention to a
single transmission cycle, which is defined to be a block of
N contiguous slots. A session is allotted slots according to its
capacity requirements, and is allotted the same number of slots
on every link that it passes through. Consequently, some slots
may remain unused. The resulting flow control policy has the
following properties.

1) Sessions require very few buffers at intermediate nodes.

2) Intra-network delays are bounded (and low).

3) It is stable in heavy and/or bursty traffic.

4) The policy is distributed; ie., after all the nodes on

a session’s path have been informed of its capacity
requirements and the period of the schedule, no further
communication between nodes is required.

In related work, Hahne [5] showed that if, at every node,
sessions were allowed to transmit in a round robin fashion
and sufficiently large windows are used, then sessions would
automatically be allotted their max-min fair rates (for the
definition of max-min fairness see {3]. Note that this policy
is completely distributed, and requires no communication
between processors. Unfortunately, the window size required
is very large. When the window size was restricted, max—min
fairness was not achieved in general, even though the through-
put of a session was lower bounded. Mukherji [13] has
analyzed a TDMA policy in which each session is allotted
at least one slot during each transmission cycle, thus lower
bounding its throughput, and accommodating isochronous traf-
fic such as voice. Uncommitted slots are allocated to sessions
according to their instantaneous requirements. In addition,
Mukherji provides upper bounds on the delays experienced

0090-6778/92803.00 © 1992 IEEE

766

by packets, and describes efficient approximation algorithms
for the construction of transmission schedules.

There is a vast body of literature on other forms of flow
control including, but not limited to, mechanisms of the store
and forward kind. The interested reader is directed to the
excellent surveys in [4], [12], and [18].

The remainder of the paper is organized as follows. In
Section II, we describe the Golden Ratio Policy. Section III
is devoted to an exploration of its properties. In Section IV,
we examine the performance of the policy, and discuss design
considerations in Section V. Finally, in Section VI, we draw
our conclusions and identify some open problems.

II. THE GOLDEN RATIO POLICY

The policy to be described is an extension of the Golden
Ratio Policy of Itai and Rosberg [8] to a network. Suppose
we have S sessions on a given link labeled 1,2,---,5, and
session ¢ is to be allotted X; slots, where for clarity, we have
suppressed the subscript identifying the link. The session is
assigned the same number of slots on every link it passes
through. The period of the schedule NV is given, and is the same
throughout the network. We further require that };_, X; = N
on every link. Consequently, it may be necessary to introduce

dummy sessions on some links so as to ensure that all of the

above constraints are met. Let 1 £ 552&1 = .6180339-- .

¢ is known as the Golden Ratio, and is related to the Fibonacci
numbers via

_d -9

The Fibonacci numbers can also be generated by the linear
recurrence Fyy1 = Fi + Fr_1, with Fy 2 0 and F 2.
The next ten numbers in the sequence are 1, 2, 3, 5, 8, 13,
21, 34, 55, and 89. Following [&itairos], mark off the
points ¢~! mod 1, 2¢~! mod1,---, N¢"' mod 1 on a
circle of circumference 1, dividing it into N intervals.
Allot to session 1 the slots corresponding to ¢~! mod 1,
2¢ ' mod 1,---, X1¢~! mod 1, to session 2 to those corre-
sponding to (X; + 1)¢~! mod 1,---,(X; + X2)¢~! mod 1,
and so on until all the slots have been allotted.

Consider the following example: § = 3, N = 8, X, =
Xo = 3, X3 = 2. The network is assumed to have just two
nodes, say 1 and 2, and a single edge joining them. All the
sessions are assumed to start at node 1 and end at node 2. The
transmission schedule on the edge is 21321213--- as can
be verified by direct computation.

We define a frame to be a transmission cycle which starts
at the slot corresponding to the first mark on the circle
following O in the clockwise direction. In the example above,
21321213 is a frame.

Note that successive transmission permits to a session are
evenly spaced. This property of the Golden Ratio policy has
been explored in great detail [16], [17] and has found use in
multiplicative hashing [10] and the design of TDMA protocols
{71, [8], [15]. Note that any irrational number could have been
used to generate the sequence of slots- the Golden Ratio is

Fy 1)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 4, APRIL 1992

optimal in that the transmission schedule generated by it is as
evenly spaced as possible [10], [16], [17].

III. PROPERTIES OF THE GOLDEN RATIO POLICY

Our primary objective is to minimize the number of buffers
that must be allotted to a session so that a transmitted packet
is never lost. As sessions are preassigned slots, they do not
interact with each other, and so it suffices to examine the
buffer requirements of a single session. In all that follows,
unless stated explicitly to the contrary, we shall assume the
following six conditions to hold.

1) N, the period of the schedule, is the same on every link.
2) All links have the same capacity.

3) X, the number of slots allotted to the chosen session, is
the same on every link it traverses, and slots that are not
allocated to a session are not ever used.

At every node, there is one transmission buffer per link
to hold the packet being transmitted.

Nodes can transmit packets on all outgoing links and
receive packets on all incoming links simultaneously.
Frames are not necessarily synchronized, i.e. frames at
different nodes do not necessarily start at the same time.
Any offset between the frames, however, do not vary
with the time (if not, and if a fast frame was upstream
of a slow one, it would eventually cause the downstream
node’s buffers to overflow with probability 1).

With these preliminaries behind us, we state and prove our
main theorems. The proof of the first theorem, being lengthy,
is deferred to the appendix.

Theorem 1: Under assumptions 1-6, if N = Fy, k > 4 and
X = Fi1. 3 < k; <k, a session requires at most two buffers
at every node (other than its source and destination) that it
passes through. Furthermore, the bound is tight. If k; < 2 or
k1 = k (ie, if X = 1 or X = N), exactly one buffer is
required.

This theorem, while elegant, is restrictive for two reasons.

4)
5)

6)

1) It is not always possible to force N to be a Fibonacci
number.

2) AsY i, X; = N, some of the X; may not be Fibonacci
numbers.

In both cases, the above result does not always hold, because
the interpermit intervals are most regular when N and X; are
Fibonacci numbers [8]. In the following important special case,
however, we can prove a variant of Theorem 1.

Theorem 2: In addition to assumptions 1-5, assume that

1) N is not a Fibonacci number.

2) There is a network wide frame synchronization—i.e, the
slots corresponding to ¢!, 2471, - - - start at exactly the
same time at every node.

Then if X > 2 is a Fibonacci number, a session requires
at most two buffers at every node (other than its source and
destination) that it passes through. Furthermore, the bound is
tight. If X = 1 or X = N exactly one buffer is required.

Proof: If X = 1 or N, each packet is forwarded
before the next one arrives, so that exactly one buffer is
required. If X > 2 we proceed as follows. Let Fj be the

PANWAR et al.: GOLDEN RATIO SCHEDULING FOR FLOW CONTROL

smallest Fibonacci number that is larger than N. Construct
a schedule with Fj slots, and allocate the first N slots
(those corresponding to ¢~ L, ..., N¢~1) as before. Do not
allocate the remaining slots. From Theorem 1, the session
requires at most two buffers. Next, at each node, delete
the slots corresponding to (N 4+ 1)¢~1, -+, Fr¢~!. Network
wide frame synchronization ensures that the deleted slots are
positioned identically at every node, and consequently their
deletion cannot change the relative positions of the slots
allotted to the session. The buffer requirement cannot therefore
change. O

Note that the proof of the last Theorem does not assume that
session 1 is allotted the same slots at every node. It may be
allotted the slots corresponding to ¢~1,2¢71,-- - at its start,
those corresponding to m¢=1, (m + 1)¢~%, --- at the next
node and so on. In fact, Theorem 2 holds if each node is
synchronized to its neighbors within one slot time. When the
number of slots allotted to a session is not a Fibonacci number,
the number of buffers required cannot be computed exactly.
The following upper bound, however, holds.

Theorem 3: In addition to assumptions 1-5, assume that

1) N is a Fibonacci number, or if it is not, that there is

network wide frame synchronization.
2) X is not a Fibonacci number.

Then the number of buffers required by the session at every
node other than the source and destination is upper bounded
by 2m where m is the smallest number of distinct Fibonacci
numbers that X can be represented as the sum of; and 2m in
turn is upper bounded by Q[J——b—g@ﬂ—_l}.

Proof: Let F, < X < Fi,4+1. From [9] we know
that we can always effect the decomposition X = F; +

-+ F,., Fi, # F,, j # I Furthermore, k; = i1 >
2+22>434+42> - 24y +2m — 2 > 2. Decompose the
session into m “minisessions” labeled 1,---m by allocating
the session’s slots to these minisessions in the following
manner. Assign to minisession 1 the slots corresponding to
¢, -, F;,¢~1, to minisession 2 those corresponding to
(F;, + 1)¢71, -+ (F;, + Fi,)¢™", and so on until all X slots
have been alotted. Each minisession requires at most two
buffers, and the buffer requirements are at worst additive. It
immediately follows that the number of buffers required is
upper bounded by 2m. In the worst case, we have X = Fj, +
Fk1—2+' -+ Fifkyisodd, and X = Fkl +Fk1-2+' ey
if k1 is even. There are at most [kl

> -| distinct numbers in

5 < Fkl +1 <X <
[log, (\/5X)] — 1, implying

} |

Number of buffers required < 2 "%-I
(©))

:2[{10&»\/5)(1 -1
O

2
When k; is odd, this bound can be tightened. Two cases arise:
in the first, the decomposition of X does not contain F}, while

the decomposition In addition,

Froe1—-1<
that

\/_ ,so that k1 =

767

in the second, it does. In the first case, the number of buffers

required is clearly upper bounded by 2[[1&@&] —1].
In the second case, from [9] we must have X —Fy, —---—F5 <
2. If the remainder is 0, we have reduced the number of terms
in the expansion by 2, while if it is 1 or 2, the number of terms
is reduced by 1, as F; = 1 and F3 = 2. It follows that when

k; is odd, the bound can be tightened to 2 HMH

If S sessions use a link, the total number of buffers required
for that link is approximately

N

Zlogd) 5X; < Slog, —— \[.

i=1

€)

The second step follows from the observation that the total
buffer requirement is maximized by alloting the same number
of slots to every session. The bound is reasonably tight when
the number of sessions is large, but is rather loose when
the number of sessions is small. As the buffer requirement
for two or more session is subadditive, the total number of
buffers required is maximized when each slot is allotted to a
different session (in which case N buffers are required), and
minimized when each slot is allotted to a single session (in
which case only 1 buffer is required). Theorem 3 implies that
intra-network delays are bounded, as a packet can wait for at
most a finite number of buffers to empty at every node that it
passes through. In [8] it is shown that the interpermit distance
is at most Fj_g, +2 slots where Fj is the smallest Fibonacci
number greater than or equal to N and Fj, is the largest
Fibonacci number less than or equal to X. The following
corollary to Theorem 3 follows immediately.

Corollary: Under the same assumptions made in Theorem 3,
if the length of a transmission cycle is T seconds, and the
session passes over L links, the intra-network delay (excluding
any delay at the source and all propagation delays on the links)

is upper bounded by (L — 1) x [2 {Ms-‘ﬂ—_l] X F_g, 42+
1] x T/N. The one accounts for the transmission time of the
packet. 0

IV. PERFORMANCE ANALYSIS

The theorems presented in the last section assume either that
the total number of slots is a Fibonacci number or that there
is network wide frame synchronization. In many applications,
however, these conditions may not be met. We cannot then
prove analogs of the theorems presented carlier. The diffi-
culty lies in the fact that the spacing between consecutive
transmission permits can take on three different values [8],
and the exact sequence of intervals formed cannot be easily
determined.

Bounds, however, may still be calculated on the number
of buffers required via the following “staircase” technique.
Construct a rectangle of width 1 and height X . On the axis,
starting at z = 0, mark off the start of intervals allocated to
session 1 as determined by the Golden Ratio Policy. Draw
horizontal lines at y = 7 + 1 between the ith and the 7 4 1st
point on the z axis, and vertical lines to join the endpoints of
the horizontal lines. The result is an uneven staircase that starts
at (0.1) and ends at (1. X), with jumps at multiples of 3 as

o A

768

Fig. 1. The staircase for X' = 5 and N = 8.

shown in Fig. 1. The staircase represents the flow of messages
from the session over the course of a transmission cycle.
The points at which the staircase jumps correspond to the
transmission of a message (if the staircase is used to represent
the transmission schedule on an edge) or the reception of one
(if it is used to represent the transmission schedule on an
upstream edge).

Any cyclic shift of the transmission sequence also generates
a valid staircase. If two staircases are superimposed on each
other, the maximum difference between the two is the number
of buffers required to hold enqueued messages. This difference
may be upper bounded by bounding the staircase between two
straight lines of slope X. Let the equation of the first line be
y = X X z + ¢; and that of the second be y = X X = + ca.
cy is chosen so that the second line touches the staircase
at one or more corners alone and lies below the staircase
at all other points. ¢y is chosen so that the second line
touches the staircase at one or more corners alone and lies
below the staircase at all other points. 2(¢; — cz) is an upper
bound on the maximum distance between the two staircases
(one representing incoming packets and the other representing
outgoing packets), and, as the number of buffers required is
an integer, |2(c; — ¢2)| upper bounds the number of buffers
required by a session at any intermediate node. It is interesting
to examine the variation in the number of buffers required
for a fixed value of N as X is varied, as shown in Fig. 2
for N = 89. The curve is jagged, but tends to increase with
X as can be seen from its envelope. Sharp dips are seen at
Fibonacci numbers. The same dips are seen if N is not a
Fibonacci number.

Last, we analyze queueing delays at the source node. We
assume that the arrival process of the packets is Poisson
with parameter A per slot. A session that is allotted X
slots has a utilization of p = A x N/X. An exact analysis
of the queuing delay for arbitrary arrival processes can be
found in [7] where an algorithm to compute the delays is
presented. The computation requirements are O(X®) and
the storage requirements are O(X2). For large X, these
can be prohibitive. For Poisson inputs, however, a simple
approximation for the mean waiting time exists [14]. The
computational complexity and storage requirements are both
O(X). To put this in perspective, it took over 12 h of CPU time

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 4, APRIL 1992

sl 1 11
1 10
NUMEER OF SLDTE ALLOTTED TO A SESEION

--I'". 1 Ll L1 1

Fig. 2. The upper bound on the number of buffers required.

on an IBM 3090 mainframe to generate the exact solution for
Figure &errfig., while the approximation took only a quarter of
a second. Let the distances between successive permits to the
session, measured in slots, be dy, - - -, dx. Define the average
interpermit distance d £ % The utilization p is the mean
number of arrivals in d slots. Then if p < 1, the mean waiting
time of a packet is approximately

X 2 1p2
W(X,N) ~ {(1+p)zzdfv +%}%
=1

where T is the length of transmission cycle (in seconds). The
mean response time, R(X, N), is simply the sum of the mean
waiting time and the service time (one slot time) so that

4

X 7
_ & dp? T

®
=1

The approximation was compared to the exact solution in [7],
and the error in the approximation is plotted in Fig. 3 for
N = 89. The error is less than 2.1% over the entire range
of X and for values of p between 0.1 and 0.9. This is low
enough for most practical purposes. In the special case when
all the interslot distances are equal, (4) is exact. If the interslot
distances are unequal, the approximation becomes exact as
p — 0.

V. DESIGN CONSIDERATIONS

We now present two extensions of the Golden Ratio Policy
that reduce the buffer requirements and eliminate the wastage
of unused stots. Let B(X.N) be the buffer requirement of
a session which is allotted X slots in a cycle of length
N.X =Y7",X,;, then BIX,N) <" B(X;,N) as
buffer requirements are at most additive. This implies that
multiplexing sessions can reduce the total buffer requirement.

Given N.X and (Xi,Xs.---.X,,) such that X =
S, X, the reduction in the number of buffers required as
a result of multiplexing is given by AB £ >, B(Xi,N)-
B(X,N).If N and m are fixed, the average reduction in the
buffer requirement can be computed as follows. For each X
between 2 and N — 1, compute A B for all possible partitions

PANWAR et al.: GOLDEN RATIO SCHEDULING FOR FLOW CONTROL

0.020

0.015

0.010

| T 1 [
YU TE G S

0.005

Relative Error In Approximation

o

Fig. 3.

Error in mean waiting time.

TABLE I
AVERAGE AMOUNT OF BUFFER REDUCTION FROM MULTIPLEXING

Average Buffer Reduction (percentage)

N m=2 m=23 m=4
89 2.8 (39%) 5.5 (55%) 8.1 (64%)

150 3.0 (40%) 8.1 (711%) 11.8 (79%)

300 3.5 (42%) 6.8 (58%) 10.1 (67%)

of X into m integers. Then find the average of AB over
all possible partitions and all possible values of X, assuming
each value of X and each partition to be equally likely. For
example, if X = 4 and m = 2, the set of all possible
partitions is {(1,3),(2,2)}. The mean reduction in the buffer
requirement for X = 4 is

2 x B(4,N) — B(1, N) — B(3,N) — 2 x B(2,N)
. . (6)

As an exact computation of the buffer requirements is in-
feasible, we have used the upper bounds on B(X, N) derived
from the staircase construction. Computational experience,
however, shows these bounds to be very tight. Table I shows
the average reduction in buffer requirements for three different
values of N and m. Clearly, the reduction, which ranges from
39 to 79%, is significant. Also note that the effectiveness of
multiplexing increases with m.

This immediately raises the question of which sessions
are best multiplexed. Three criteria for deciding which ses-
sions to multiplex are examined in [2], namely, the “path-
based” scheme, the “route-based” scheme and the “hop-count”
scheme. In the path-based scheme, two routes are combined
into a single entity when they enter a node if both their
destinations and subsequent routes are identical. In the route-
based scheme, sessions are combined into a single entity when
they have the same source, destination, and physical path. In
the hop-count scheme, two sessions are combined if

1) They have traversed the same number of links from their

respective sources, or

2) If they have the same number of links to traverse to

reach their respective destinations.

The path-based scheme is shown to be better than the
route-based scheme by a factor of the “average route length”

769

T

Only session 4
is active

Session 3
is active | |

v v
sl Te] o 20l]2]
a packet of session 3 a packet of session 4
is transmitted is transmitted

Fig. 4. An example of the single pointer scheme.

(measured in hops), which is usually about 3 to 4 in typical net-
works. The hop-count scheme creates the fewest multiplexed
entities, but is not desirable because of possible congestion
unfairness.

We now examine ways to utilize unused slots. The Golden
Ratio Policy is a scheduled based scheme, and slots can be
used only by the session assigned to them. This problem,
which is typical of time division multiplexed (TDM) schemes
can be solved by adopting statistical time division multiplexing
(STDM). Two STDM schemes which are derived from the
Golden Ratio Policy are next presented.

The first scheme, which we call “dynamic substitution,” is
based on a scheduling sequence and a replacement selection
procedure. The scheduling sequence, say SEQ, is generated
according to the Golden Ratio Policy. For example, SEQ(i) =
j implies that slot ¢ is assigned to session j. At each slot, if
the designated session is active, then one of its packets will
be transmitted in the slot. If not, a replacement session will
be selected to use the slot instead.

The selection of the replacement session can be done in
many ways. For example, bursty sessions may be prioritized
over stream oriented sessions, as the latter tend not to require
additional bandwidth. Among bursty session, moreover, the
ones with heavier load should be given higher priority. Another
intuitively appealing idea is to select the session with the
longest queue.

The second scheme, referred to as the “single pointer”
scheme, also uses the Golden Ratio Policy to generate the
scheduling sequence SEQ. Unlike the dynamic substitution
scheme, however, there is no fixed association between the
indexes in SEQ and the slot numbers. Instead, the actual
transmission is completely governed by a single pointer in
the following manner.

1) Move the pointer to the next entry of SEQ

2) If the session pointed to is active, its packet will be
transmitted

3) Otherwise go to Step 1.

Take the simple configuration depicted in Fig. 4 as an
example. There are four sessions and their scheduling se-
quences are SEQ = (4,1,3,1,2). Let the transmission be for
session 1, which is indicated by the position of the pointer.
For the current slot, if session 3 is active, its packet will be
transmitted. If on the other hand only session 4 is active, then
a packet of session 4 will be transmitted, as depicted in the
figure.

B £

770

Both these schemes allocate bandwidth dynamically to
sessions. They do, however, need an additional flow control
policy to prevent buffer overflow. An analysis of the buffer
requirement under these policies is beyond the scope of this
paper. Finally, we discuss some properties of the single pointer
scheme.

Thereom 4: Consider a Golden Ratio Policy with S sessions
and let Eil X; £ N where the {X;} and N need not
be Fibonacci numbers. Suppose that sessions are sequentially
assigned, i.e., session 1 is assigned its slots first, session 2 is
assigned its slots next, and so on until all the slots have been
allotted. Then when session S or 1 is idle, and the remaining
(S — 1) sessions are always active, the Single Pointer scheme
is a Golden Ratio Policy with (S — 1) sessions and cycle
length (N — X;) or (N — X7).

Proof: When session S is idle, the entries of session S are
essentially absent from the scheduling sequence. Equivalently,
the points (X; + -+ Xs_; + 1)¢~! mod 1 are removed
from the circle. The remaining (N — Xg) points are identical
to those of a Golden Ratio Policy with (S — 1) sessions and a
cycle length of (N — X) slots. The correctness of the claim
follows.

When session 1 is idle, the first X; marks on the unit circle
are ignored. The remaining (N — X;) marks are a rotation
of the set of marks generated for a Golden Ratio Policy with
(S — 1) sessions and cycle length (N — X,) slots. Once again,
the correctness of the claim follows.

Corollary: Consider a Golden Ratio Policy with S ses-
sions, let Zle X, & N, and suppose that sessions are
sequentially assigned. Then if sessions 7, 7+1, -+, 1+2Z—1 are
the only active sessions, the single pointer scheme is identical
to a Golden Ratio Policy with Z sessions and a cycle length
of Xi + X1+ + Xiyz1.

Proof: This theorem can be proven by repeatedly applying
Theorem 4 to each of the idle sessions. 0

Another implementational issue that is of importance is
the process by which sessions are added and deleted after
the initial schedule has been computed. A session is easily
deleted by disallowing transmissions in the slots assigned to
it (possibly by marking its slots as unused). If a new session
which requires X slots is to be added, and if a contiguous
block (in Golden Ratio sequence) of X or more slots is
available, some (or all) of these slots can be assigned to the
session. If no such block is available, it is necessary to re-
allocate two or more active sessions into a single continguous
block so as to free up enough slots for the new session. Doing
so can cause a backlog of packets, thus requiring additional
buffer space if packet loss is to be avoided. Provided that
a session does not transmit continuously, this backlog will
eventually be cleared. If the addition of sessions is done
only infrequently, it may be possible to simply stop all
transmissions for a short while, recompute the schedule, and
then restart transmission. A backlog of packets may build up at
the source of each session, but will be cleared if the sessions do
not transmit continuously. No completely satisfactory solution
(other than the temporary imposition of some form of window
flow control) to this problem has been found, and we leave
this as an important open problem.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 4, APRIL 1992

VI. CONCLUSION

A schedule based flow control scheme constructed around
the Golden Ratio policy that requires very few buffers and
guarantees low end-to-end delays in a network has been pre-
sented. Various properties of the policy have been determined,
and a number of implementational issues have been examined.
Many open questions remain, however.

Tighter bounds on the buffer requirements when the number
of slots assigned to a session is not a Fibonacci number
would be of interest. Additionally, some understanding of the
behavior of the interslot distances when the total number of
slots is not a Fibonacci number would prove useful.

Two other topics merit further investigation.

1) A provably optimal (under some suitable measure of
optimality) scheme for combining sessions to reduce the buffer
requirements.

2) A policy for assigning idle slots to sessions with en-
queued packets so as to minimize (over all the sessions) the
maximum mean queue length. We conjecture that the optimal
policy will be to serve the session with the longest queue, but
no proof of this has been found.

APPENDIX

For convenience, we first
Corollary 5.1 from [8].

Corollary 5.1: If N = Fj, and X = F},, there are Fy, _o
interslot distances of length I, and Fj, _1 interslot distances
of length lx, ;.

Lemma 5.1: If N = Fk, lm = Fk+1—m-

Lemma 1: Consider a schedule of length N = Fy, k > 3.
For a session assigned Fj, slots, k1 < k, the Golden Ratio
schedule can be generated the following way. If the number
of slots in the schedule are numbered 1 to Fj, then allot
slot numbers Fi_; mod Fy, 2 X Fy_; mod Fy,---,F}, x
Fir_1 mod F}j to the session.

Proof: This follows from Lemma 5.1 in [8] with m = 2.
Each new slot must be Fj_; slots clockwise from the last
slot. O

Comment: Lemma 1 provides a practical way to allocate
slots to sessions without any need to perform real arithmetic.

Lemma 2: Fy,, X Fj._1 = (—l)k‘HquCl mod Fy, k >
1, 1 <k <k

Proof: By induction on k;. This relation is true for
ki1 = 1(Fy = 1) and ky = 2(F> = 1) for any k > k;. Assume
it to be true for all k; < k. Then

Fryv1 X Feo1 = (Fry—1+ Fr) X Fry
= (—l)lirl[Fk_kl — Fk—kﬁ-l] mod Fk
= (—1)kl+2Fk_kl_1 mod Fk

produce Lemma 5.1 and

1

a
Consider the schedule of a session assigned Fy, slots in a
schedule of length Fj. For a particular node in the sessions
path, we will call the schedule on the incoming and outgo-
ing links, schedule I and schedule O, respectively. Number
the slots assigned to the session under schedules I and O
I, I, 1, -, Ip, ,and 01,0y, -, OF,Q1 in the order they are
generated by the Golden Ratio Policy. The relative positions

PANWAR et al.: GOLDEN RATIO SCHEDULING FOR FLOW CONTROL

of these slots under schedules I and O are cyclic shifts of one
another. The schedules need not be slot synchronized, i.c., I
may be shifted from O by a fraction of a slot. The interslot
distances, measured in slots, are either Fj_p,4+1 O Frg 42
for k; > 1 and k > k; (Lemma 5.1, Remark 5.1, [8]).

Consider schedule I, and denote in parentheses the length
of the intervals, measured in slots, between successive slots
assigned to the session, starting with the slot number Fj_3
(i.e., the first slot assigned to the session) and going around
the unit circle in the clockwise direction. Thus, for k; = 2,
we have I, (Fy), for ki = 3, we have L{(Fr_1)I2(Fi—2), for
kl = 4 we have Il(Fk_g)Ig(Fk_z)Iz(Fk,2) and for k] =5
we have Il(Fk,;;)lg(Fk_g)fg,(Fk,_q)Ig(Fk_3)14(Fk_4).

Lemma 3: If X = Fy, and N = Fy, the following hold.

1) For ki even, the intervals of length Fj_j, 42 are
located in the schedule fragments I Fk.l;,ﬁl(Fk,kﬁz)Il,
IFk1—2+2(Fk—k1+2)12’ Tt IFkl (Fk—kl+2)IFk|—l .

2) For ki even, the intervals of length Fi_x,+1 are
located in the schedule fragments It(Fr—g,+1)IF, _ +1,
L(Fe—ty+)1, 42y IR o (Frby 1) R, -

3) For k; odd the intervals of length Fi_ 4o are
located in the schedule fragments [1(Fk—k1+2)IFk1_z+17
I(Fr—ky+2) IR, o2, IR o (Fr—k42) IRy, -

4) For k; odd the intervals of length Fj_x +1 are
located in the schedule fragments katlH(Fk_le)Il,
Irg, +2(Fieoky+) oy IR (Freky +2) R, o

Proof: By induction. For k; = 2,3,4,5 this can be
verified by writing the sequence out as done above. Assume
that these properties hold for an odd value of k1 > 5. We shall
show that properties 1 and 2 hold for k; + 1. (An identical
argument shows properties 3 and 4 to hold for k1 + 1 when
ki is even).

By Lemmas 1 and 2, I, ,,, 1 < 1 < Fi—1 will fall
Fi_i,+1 slots in the clockwise direction with respect to I;,
splitting intervals of length Fi_, +2 into two intervals, one of
length Fy_g, and the other of length Fi_, +1 in the following
manner: Ii(Fk—kl)IFkl+i(Fk—k1+1)IFk,72+iv 1<+ < Fkl—l‘
In addition, the remaining intervals of length Fy_j, 1 were
created by the allocation of the first F, slots. The manner in
which intervals of length Fj_j, +1 and Fj_g, occur satisfies
properties 1 and 2 for k; + 1. d

Proof of Theorem 1: We use the notation A < B to
indicate that slot B lies in a clockwise direction from slot
A. Consider an interslot interval of length F_j, 41 between
slots Iy and Ig, 1 < L, R < Fy,, L # R onschedule I. Two
cases may arise depending on the relative position of schedule
I and schedule O.

Case 1: There lies a slot O,,, assigned to the session under
schedule O, between the two, i.e., ; X Op, < Ip, 1 <m <
Fy,.

Case 2: There lie two slots Op: and Opgs, assigned to
the session under schedule O, on either side of Iy and Ig,
respectively, such that Op < It < Ir < Ogs. This occurs
when an interslot distance of Fy_g, +2, under schedule O
overlaps both Iy, and Ig, k > ki + 3.

We will now define a procedure of associating, or pairing
off, each slot from schedule I with a neighboring slot from
schedule O. We begin by associating O,,, or O+ or Og: with

am

Ir or Ig. A “” connects the associated pair.

Case 1:

Subcase 1: m > L, R.

]Cl odd: Om - IL.

k, even: O, — I.

Subcase 2: m < L,R.

k, odd: O,, — Ig.

ky even: Oy, — Ip.

Subcase 3: L < m < R.

%, odd: Cannot occur as L > R by property 4 of Lemma 3.

ki even: O, — Ig.

Subcase 4: R < m < L.

kl odd: Om - IR.

k1 even: Cannot occur as R > L by property 2 of Lemma 3.

Case 2: Lemma 3 can be used to show that only two
possibilities exist.

Subcase 1: L < L', R > R’

k, even: Op — Ir.

Subcase 2: L > L', R< R’

kl odd: OL/ - IL.

As an example consider what happens when Oy, is paired
off with I (Case 1, Subcase 2, k; odd). O 1 can then be
paired off with Iry; since both are Fj_; slots away from
O, and Ir and therefore have the same relative position.
We can continue this pairing off until we reach /g, , which
is paired with Oy, 4 £, —R- At this point we next pair off Iy
with’Om 1 F,, -r+1- But I, by Lemma 2, is Fr_1 — Fi—k,
slots away from I F, - Therefore I, shifts by Fy_j, slots
in the anticlockwise direction in relation to O+ Fi, —R+1
as compared to the previously paired off slots. This will
still ensure that I, and OuiF,, —R+1 ar€ still less than
Fi._k, 41 slots away from each other. We can now complete
this process by pairing off I; with Opmyp, —r+; for j <
R — m. 01,0, --,0,,_; may then be paired off with
IR_m+1, -+ Ir—1. In all subcases, the pairing off is done in
such a way that the two slots paired off are neighbors. In all
subcases, except for two, this is done by making sure that the
two slots that are paired off are within F_, 41 slots of each
other. The two subcases where the paired off slots may be
more than Fy_, 41 slots away from each other, and yet can
be shown to be neighbors, are as follows:

1) Case 1, Subcase 3, k; even:

We start the pairing off process with O, and Ig.
Continuing we have Opmi1 — Irt1,- ", Om+Fy —R —
kal. Also we can pair off O7 — Ip—m4+1,02 —
Ip_m42..Om-1 — Ir_1. Next, we continue with
Om+Fy,_n ., J1. This widens the distance between the
two associated slots by Fi_g, slots, and therefore the
distance between the two can be at most Fi_k, 42 =
Fe—k,+1 + Fr_p, slots. Also, I; will be in the
clockwise direction relative to Opy r, —R+1- But since
the interslot distances in the anticlockwise direction
from Iy. Iy, - IR, _, is Fy_, +2, the paired off slots
will continue to be neighbors. This will take care of
all the remaining slots as long as R —m < Fy, 1 or
m+Fy, —R+Fg,_1 > Fy,,ie, R—-m < Fy, _;. Since
L < m < R and since R — L = F},_, by property 2
of Lemma 3, this is always true.

o M o

772

2) Case 1, Subcase 4, k, odd:

Once again, a one-to-one pairing off between neighbors
in schedule / and O can be constructed as in the
previous example.

Define the discrepancy d between the two schedules as
follows. Traverse the circle in a clockwise direction, starting
from any slot. Initialize the discrepancy to 0. Each time a slot
from schedule I is encountered, increment it by 1. Each time
a slot from schedule O is encountered, decrement it by 1. If an
I slot and O slot coincide, do not modify the discrepancy. At
the end of one cycle we must have d = 0 (the two schedules
contain an identical number of slots). Let the maximum value
of the discrepancy over one cycle over all possible starting
slots and over all possible relative shifts of schedules I and O
be diyax- Then the maximum number of buffers required will
be dpax. Now at the end of the cycle, d can be expressed as a
running sum, ie., d={+1-1+1—1-1+1} = 0. By the
pairing off process described earlier it is clear we can express d
in the following form: d = {(+1—-1)+ (-1 +1)+--)} or
d={+1)+(+1-1)+...(=1)}. Note that each bracketed
pair consists of a +1 and a —1. It is easily seen that the
discrepancy at any point cannot exceed 2, i.e., dmax < 2. It
follows that at most two buffers are required.

To see that the bound is tight, consider any subcase of
Case 2). As there are two slots on schedule I between con-
secutive slots on schedule O, two packets may arrive before
one of them can be transferred to the transmission buffer for
transmission. This necessitates at least two buffers. a

ACKNOWLEDGMENT

The statement and proof of Theorem 2 are due to E. Hahne.
We gratefully acknowledge her contribution to this work. We
are also greatly indebted to the referees: their unstinting efforts
have significantly improved the presentation of this paper.

REFERENCES

[1] J. Bauwens and M. De Prycker, “Broadband experiment using asyn-
chronous time division techniques” Elect. Commun. vol. 61, no. 1, 1987.

[2] M-S. Chen, B. Kadaba, and G. Grover, “Efficient hop by hop buffer
class flow control schemes,” in Proc. GLOBECOM 87, Tokyo, Japan,
1987.

[3] E.M. Gafni, and D. P. Bertsekas, “Dynamic control of session input rates
in communication networks,” IEEE Trans. Automat. Contr., vol. AC-29,
pp. 1009~1016, 1984.

[4] M. Gerla and L. Kleinrock, “Flow control: A comparative survey,” IEEE
Trans. Commun., vol. COM-28, pp. 553-574, Apr. 1980.

[5] E.L. Hahne, “Round robin scheduling for fair flow control in data
communication networks,” Ph.D. dissertation, M.I.T, Cambridge, MA,
1986.

[6] G. Hebuterne, “STD switching in an ATD environment,” in Proc.
INFOCOM 88, pp. 449-458.

[7] A.Hofri and Z. Rosberg, “Packet delay under the golden ratio weighted

TDM policy in a multiple-access channel,” JEEE Trans. Inform. Theory,

vol. IT-33, pp. 341-349, 1987.

A. Itai and Z. Rosberg, “A golden ratio control policy for a multiple ac-

cess channel,” IEEE Trans. Automat. Contr., vol. AC-29, pp. 712-718,

1984.

[9] D.E. Knuth, The Art of Computer Programming, vol. 1.
Addison-Wesley, 1973, p. 85.
[10] ——, The Art of Computer Programming, Vol. 3. Reading, MA:
Addison-Wesley, 1973. pp. 506—544.
[11] H. Le Bris and M. Servel, “Integrated wideband networks using asyn-
chronous time division techniques,” in Proc. ICC 1986, pp. 1720-1724.

8

Reading, MA:

[EEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 4, APRIL 1992

[12] N.F. Maxemchuk, and M. El Zarki, “Routing and flow control in
high speed wide area networks,” in Proc. IEEE, vol. 78, pp. 204221,
Jan. 1990.

U. Mukherji, “A periodic scheduling problem in flow control for

data communication networks,” IEEE Trans. Inform. Theory, vol. 35,

pp. 436-439, 1989.

[14] T.K. Philips and S.S. Panwar, “Approximating the mean waiting time
under a TDMA schedule,” in Proc. 28th Allerton Conf. Commun. Conf..
Comput., 1990.

[15] Z. Rosberg and M. Sidi, “TDM policies in multi-station packet radio
networks,” IBM Res. Rep. RC 12781, May 1987.

[16] V.T. Sos, “On the distribution mod 1 of the sequence na,” Ann. Univ.
Sci. Budapest Eotvos Sect. Math., vol. 1, pp. 127-134, 1958.

[17] S. Swierczkowski, “On successive settings of an arc on the circumfer-
ence of a circle,” Fund. Math., vol. 46, pp. 187-189, 1958.

(18] J. Turner, “New directions in communications (or which way to the
information age?),” IEEE Commun. Mag., vol. 24, pp. 8—15, 1986.

(13

Shivendra S. Panwar (S’82-M’85) was born in
Delhi, India, on December 15, 1959. He received
the B. Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur, in 1981,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Mass-
achusetts, Amherst, in 1983 and 1986, respectively.

From 1981 to 1985 he was a Research Assis-
tant at the University of Massachusetts. He joined
the Department of Electrical Engineering at the
Polytechnic Institute of New York, Brooklyn (now
Polytechnic University), where he is currently an Associate Professor. He
spent the summer of 1987 as a Visiting Scientist at the IBM T.J. Watson
Research Center, Yorktown Heights, NY, and has been a Consultant to AT&T
Bell Laboratories, Holmdel, NJ. His research interests include the analysis and
design of integrated networks, local area networks and multiaccess channels.

Dr. Panwar is a member of Tau Beta Pi and Sigma Xi. He is currently
a member of the IEEE Communications Society Technical Committee on
Computer Communications.

Thomas K. Philips received the B.E. degree from
Benares Hindu University, Benares, India, and the
M.S. and Ph.D. degrees from the University of
Massachussets at Amherst in 1980, 1983 and 1986
respectively.

From 1985 to 1990 he was a member of the
Research Staff at the IBM T.J. Watson Research
Center, Yorktown Heights, NY, working on Graph
Theory, Queuing Theory, and the Design of Algo-
rithms.

He is currently on assignment at the IBM Retire-
ment Fund, Stamford, CT.

Mon-Song Chen was born in Taipei, Taiwan, in
1956. He received the B.S. degree in electrical en-
gineering from National Taiwan University, Taipei,
Taiwan, in 1978, the M.S. degree in electrical en-
gineering from University of Washington, Seattle,
WA, in 1982, and the Ph.D. degree in system
engineering from Polytechnic Institute of New York,
Brooklyn, NY, in 1985.

He joined IBM T.J. Watson Research Center,
Yorktown Heights, NY as a Research Staff Member
in 1985. He worked on networking architecture
design and analysis, protocol verification and conformance testing, and
WDMA signaling protocols. He is currently the Manager of the High
Bandwidth Applications group and working on multimedia teleconferencing
systems and other bandwidth intensive applications.

Dr. Chen is a member of the IEEE Communications and Computer
Societies.

