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Abstract—Multimedia traffic is becoming an increasing portion
of today’s Internet traffic due to the flourishing of multimedia ap-
plications such as music/video streaming, video teleconferencing,
IP telephony, and distance learning. In this paper, we study the
problem of supporting multimedia traffic using a generalized
processor sharing (GPS) server. By examining the sample path
behavior and exploring the inherent feasible ordering of the
classes, we derive tight performance bounds on backlog and delay
for regulated multimedia traffic classes in a GPS system. Our
approach is quite general since we do not assume any arriving
traffic model or any specific traffic regulator, other than that
each traffic flow is deterministically regulated. Such deterministic
regulators, as well as approximations of the GPS server, are widely
implemented in commercial routers. In addition, our analysis
is very accurate and achieves a high utilization of the server
capacity, since we exploit the independence among the traffic flows
for higher statistical multiplexing gains. Numerical examples and
simulation results are presented to demonstrate the accuracy and
merits of our approach, which is practical and well suited for
supporting multimedia applications in the Internet.

Index Terms—Generalized processor sharing (GPS), multi-
media, quality-of-service (QoS), scheduling, traffic regulation.

I. INTRODUCTION

ULTIMEDIA traffic is becoming an increasing portion
Mof today’s Internet traffic due to the flourishing of mul-
timedia applications such as music/video streaming, video tele-
conferencing, IP telephony, and distance learning. Applications
that generate such data can have very diverse quality-of-ser-
vice (QoS) requirements. One major concern in the design, im-
plementation, and operation of the Internet is how to provide
QoS guarantees for applications with diverse QoS requirements,
while achieving high utilization of network resources.
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QoS guarantees can be provisioned in the Internet using
the architectures described in [1] or [2]. However, due to the
advances in dense wavelength division multiplexing (DWDM)
technology, over-provisioning in the network core has become
a general practice for many service providers. Nevertheless, we
argue that over-provisioning does not necessarily solve the QoS
provisioning problem. This is because over-provisioning may
not be applicable to all segments of the network, due to tech-
nical, regulatory, or capital investment limitations. This makes
it difficult to guarantee over-provisioning on an end-to-end
basis in order to meet QoS requirements. In order to guarantee
end-to-end performance, QoS mechanisms are still needed
for the relatively resource-constrained access networks (e.g.,
wireless access networks), while it may be possible to apply
over-provisioning in the core.

Various QoS mechanisms have been developed over the
years, such as traffic shaping, admission control, QoS signaling
and resource reservation, QoS routing, active queue man-
agement, and packet scheduling. Leaky bucket-based traffic
regulation and generalized processor sharing (GPS) are among
the most successful QoS mechanisms, since both of them are
not only underpinned by rigorous theoretical analysis [3]-[7],
but also widely implemented in commercial routers [8].

GPS is a work-conserving scheduling discipline in which
multiple traffic classes share a deterministic server. With GPS,
each class is associated with a weight and is guaranteed a
minimum service rate in proportion to its weight whenever it
is backlogged. Furthermore, the residual service of the non-
backlogged classes is distributed to the backlogged classes
in proportion to their weights. Therefore, GPS is efficient in
utilizing and sharing the server capacity (since it is work-con-
serving and the bandwidth is shared by all classes), while being
capable of isolating the classes (since each class is guaranteed
a minimum rate, it won’t be affected by a misbehaving class).
By assigning different weights to the classes, service differen-
tiation can be easily achieved.

GPS has been widely studied under various traffic character-
izations and under deterministic settings [3] or stochastic set-
tings [4]-[7]. Generally, the bounds obtained by deterministic
GPS analysis are very conservative, since they are derived for
the worst case scenario that only occurs with a very low proba-
bility [3]. Such hard QoS guarantees are unnecessary for many
multimedia applications, where a certain level of QoS violation
is generally acceptable. On the other hand, although the existing
bounds obtained by statistical GPS analysis can achieve a much
higher resource utilization than deterministic bounds, the traffic
characterizations used in such analysis are usually hard to mea-
sure and enforce [4]-[7].
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In this paper, we investigate the behavior of a high-speed
GPS server under deterministically regulated multimedia
traffic flows, but in a stochastic setting. We present a prac-
tical framework for supporting multimedia traffic using GPS
servers. Within this framework, multimedia traffic flows are
regulated with deterministic regulators (such as the popular
leaky bucket regulator or other piece-wise linear regulators),
thus greatly simplifying user traffic regulation, monitoring, and
enforcement, as in a deterministic GPS analysis [3]. We then
derive tight statistical upper bounds on the tail distribution of
buffer occupancy and delay for each class in the GPS system,
which achieves a high resource utilization as in a statistical
GPS analysis [4]. More specifically, we exploit the indepen-
dence among the flows and derive tight moment bounds for the
aggregate arrival process of each class. Such moment bounds
produce an accurate statistical characterization of the aggregate
traffic of each class when used with the Chernoff bound. Then,
by exploring the inherent feasible ordering of the classes [3],
[4], we examine the sample path behavior of the multimedia
sessions served by a single GPS server in isolation, and derive
the backlog (i.e., buffer occupancy) and delay bounds for
each class in the GPS system. We also present simulation and
numerical results to demonstrate the efficacy of the proposed
approach.

Such a “hybrid” approach has many advantages. First, it ob-
tains tight statistical bounds on the backlog and delay without
any assumption on the traffic arrival models. Second, our ap-
proach is amenable to implementation and policing as in a deter-
ministic GPS analysis [3], and being capable of achieving high
resource utilizations as in a statistical GPS analysis. Third, our
approach is computationally efficient. GPS systems with a large
number of classes and hundreds or thousands of flows per class
can be easily handled (see Section IV). Such an approach is quite
practical and effective for supporting multimedia applications in
the Internet.

The remainder of the present paper is organized as follows. In
Section II, we present some preliminary results for the analyt-
ical framework. We derive the backlog and delay bounds for a
GPS queue with regulated multimedia traffic in Section III. Nu-
merical studies and simulation and numerical results are pre-
sented in Section I'V. Related work is discussed in Section V.
Section VI concludes this paper.

II. PRELIMINARIES

Consider a GPS server with a transmission rate C'. The server
serves IV classes of incoming traffic, where each Class ¢ con-
tains a set of flows (denoted by C;, 7 = 1,2,---, N). Each flow
may itself be an aggregate of the traffic from multiple sessions.
As shown in Fig. 1, arriving traffic from each flow & belonging
to Class 4, is regulated by a deterministic envelope A ; (7). Ar-
riving Class ¢ traffic is buffered at the corresponding queue, i.e.,
Queue ¢. In the following analysis, we consider a fluid traffic
model. It is worth noting that our results can also be applied to
packetized or discrete-time traffic arrival models as well [9].
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Fig. 1. A GPS system with IV classes of regulated multimedia traffic flows.

A. Regulated Flows

The traffic arriving from a flow & of Class ¢ in an interval
[t1,t2) is denoted by A; 1 (¢1,12). We assume that the arriving
process A; i (t1,t2) has the following properties.

(P1) Additivity: Forany t; < to < t3, we have A; p(t1,t2)+

A k(ta,t3) = Aji(t1,t3).

Subadditive Bounds: The traffic is regulated by a deter-

ministic subadditive envelope AY ,,i.e., A; (t,t+7) <

Af,(r), forall t > 0and 7 > 0 and A%, (1) +

Afk(rz) > A¥,(m1 + 1), forallmy > 0 and 5 > 0.

Stc;tionarity: The A; i;’s are stationary, i.e., for all posi-

tivet,7,and t’ Pr{A; p(t,t+7) < z] = Pr{A; »(t',t'+

7) < ], for all x > 0. In other words, the statistical

properties of A; ;, do not change with time.

(P4) Independence: All flows are statistically independent.

Remarks:

* These assumptions are quite general [3]-[7]. The class
of subadditive deterministic traffic envelopes is most
commonly used as traffic regulators. The stationarity
and independence assumptions are also quite common,
especially when the flows are multimedia streams from
different users. Note that ergodicity is not assumed.

e The traffic regulators most widely used in practice are
leaky buckets with a peak rate enforcer. As generaliza-
tion, a traffic session could be regulated by M > 2
leaky buckets, each being characterized by a two-tuple,
{o™.,p.}, m = 1,---, M. The resulting deterministic
envélopé of these M leaky buckets is the minimum of
themselves, i.e.,

(P2)

(P3)

k(1) =

min o + Ty, YT >0 1
i, oot} 0

which is a concave, piecewise linear envelope process. The
M = 1 case corresponds to the single leaky bucket regu-
lator.

* A consequence of subadditivity of A7 is that, for all ¢

lim

T— 00

Ai. t7 t —|— T
¥ = Pik- 2)

That is, the long-term average rate for A; (¢, +7) exists.



OOTTAMAKORN et al.: ON GPS WITH REGULATED MULTIMEDIA TRAFFIC FLOWS

B. Generalized Processor Sharing

A scheduler at a network node determines the rates at which
buffered traffic for the classes is transmitted (see Fig. 1). GPS is
a work-conserving scheduling discipline: if there is backlog in
the queue, the traffic will be served continuously with a constant
rate C. Under GPS, each Class ¢ is assigned a fixed and real-
valued positive number ¢;,7 = 1, - -, N, called its GPS weight.
As shown in Fig. 1, a GPS server serves the aggregate traffic
from N classes simultaneously. More precisely, the classes are
served as follows.

1) Let S;(¢,t + 7) denote the amount of Class ¢ traffic served

in the interval [¢,t + 7). If Class ¢ is backlogged during
[t,t + T), we have
Si(t,t+1) S i

QP RT) S P i _19... N, 3
Sj(f./f-}—T) - ¢j J ’ )

2) It has been shown that there exists an order among the
classes such that, after relabeling the classes, we have

i

Pi < SN
Zj:i i

1—1
C=>pi], 1<i<N &
j=1

where p; = Zi;l Pj ks Pjk is defined in (2), and 22;11 j
is assumed to be zero when 7z = 1 [3], [4]. Note that we
assume Zf\;l pi < C for the system to be stable.

GPS queues are generally very difficult to analyze due to the
coupled service rates and backlogs: the service rate of a class
is dependent on backlogs of all the classes, while the backlogs
of all the classes are in turn dependent on the service rates. By
applying a sample path analysis, and exploring the inherent fea-
sible ordering among the sessions, we can break such couplings
and derive QoS bounds. It has been shown in [3] that for a stable
GPS queue, such a feasible order always exists, although not
being unique.

It is also worth noting that due to the fluid traffic assumption,
GPS cannot be directly used in packet switched networks (such
as the Internet). To adopt GPS in packet switched networks,
discrete GPS approximations, such as packet-by-packet GPS
(PGPS) [3] and worst-case fair weighted fair queueing (WF?Q)
[9] have been proposed. Specifically, it has been shown in [9]
that WF2(Q) provides almost identical service to GPS with a
maximum difference of one packet size, and it shares the fair-
ness property of GPS.

III. STATISTICAL ANALYSIS

In this section, we will derive the upper bounds on the tail dis-
tributions of backlog and delay for each traffic class, consisting
of multimedia data flows satisfying properties (P1)-(P4). We
first derive the bound for the moment generating function of the
aggregate traffic for each class, and then obtain upper bounds
on the tail distributions of backlog and delay for each class by
applying the moment generating function bounds derived in the
first step. The notation used in the following analysis is summa-
rized in Table L.
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TABLE I
NOTATION
At t+71) aggregate traffic from Class ¢ flows in [t, ¢ + 7).
Si(t,t+71) amount of Class ¢ traffic served in [¢,t + 7).
A; (¢, t+7) aggregate traffic from the kth flow of Class ¢ in [¢, t+T).
A7 o(T) deterministic envelope of A; r(t,t + 7).
M; 1,(6,7) moment generating function of A; 1 (t,t + 7).
M;(0,T moment generating function of A; (¢, t + 7).
C capacity of the GPS server.
o GPS weight of Class 1.
Pik long term average rate of A; x(t,t + 7).
Pi long term average rate of A;(t,t + 7).
C; number of Class 4 sources.
Qi) Class i backlog at time ¢.
D;(t) delay experienced by Class i traffic arriving at time ¢.

A. Moment Bounds for Aggregate Traffic

For Class i, i € {1,2,---,N}, let A;(¢1,t2) denote the
aggregate traffic from Class ¢ flows in an interval (t1,t2), i.e.,
Ai(t1,t2) = 22;1 A, 1 (t1,t2). By definition, the moment
generating function of the cumulative arrival of a Class ¢ session
k, Ai,k(t,t + T) is

M; . (0,7) = E [eeA“'(t’HT)} . )

With the independence assumption (P4), we can derive the mo-
ment generating function of Class ¢ aggregate traffic as

C;
M(8,7) = B [0 = T Mir(6,7). ©)
k=1

We then apply Theorem 1 in [10], which presents a bound on
the moment generating function of each flow, and have

Pi kT 6A*, (1)
M; S <1 ik —1).
107 S 14 (e ) B

Substituting (7) into (6), we derive the bound on the moment
generating function of Class ¢ aggregate traffic as follows:

C;
ML'(G,T) S

Remarks:

o M;(-) is expressed in terms of simple deterministic en-
velopes of arriving flows, that is, the leaky bucket or mul-
tiple leaky bucket functions [see (1)].

 Ifthe Class ; flows are homogeneous, i.e., all flows in Class
i have the same envelope, Af (1) = Al (1) = -+ =
Aj ¢, (7), then M;(-) has the following simplified form:

C;
Mi(0,7) < |14+ LT (6“?-1“) - 1)] !

A?J(T)

B. Statistical Bounds on Backlog and Delay

In this section, we study the sample path behavior of the ag-
gregate traffic of each class in the GPS system, as shown in
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Fig. 1. We apply the moment generating function bounds de-
rived in Section III-A to obtain the upper bounds on the tail dis-
tributions of the backlog and delay for each class.

Consider a tagged Class 7. Let time O indicate the start of a
busy period of length B during which Class i is continuously
backlogged. During the busy period, traffic will be served and
transmitted continuously at a constant rate C'. For some subin-
terval [0,7) € B, since there is backlog and due to the work
conserving property, the server is busy during this subinterval.
Then we have

j=1
i—1 N
> 8i(0,7) + jsl(o ) >Cr (10)
j=1 Jj=t v
We can solve (10) for S;(0, 7) and have
¢‘ i—1
Si(0,7) > ——— [ C7 = 8;(0,7) (11)
j=i ¥ j=1

It has been shown that for regulated classes, the maximum
backlog and delay are achieved when all the classes become
greedy from time O [3]. Since the busy period starts at time 0,
the amount of serviced traffic of a class is bounded by its arrival
during [0, 7). The following inequality holds true for all classes

J:

Sj(O,T) SAj(Oﬂ'). (12)
Applying (12), (11) can be rewritten as
i i—1
Si(0,7) > ——— [ O =" 4;(0,7) (13)
j=i ¥ j=1

Define ¢; = ¢;/ (Z;\;, ¢;) to simplify notation. As Q;(0) = 0,
we have Q;(7) = A;(0,7)—5;(0, 7) for7 < B. We then obtain

i—1

< A;(0,7) = | O =3 Aj(0,7)

i=1

Qi(7) (14)

Theorem 1: Given a GPS server with a service capacity C that
serves N traffic classes {A1, As, - - -, Ay} satisfying Properties
(P1)-(P4). Assume that 2?21 pi < C and a feasible ordering

Withrespectto {¢17 ¢27 Ty ¢N} and {p17 P2, - 7pN} Forany
time instance 7 in a busy period and any Class ¢ backlog level
q¢; > 0, we have

Pr(Qi(r) > g

C;
< inf { e~ flaitdiCT)
<l fi

i )

i—1 Cj
PjkT YOA* (1) )1
<ILIT 1 2 (e -
j=1k=1 Aj,k(T)

15)
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Proof: We will use the moment generating function bound
in (8) to construct the upper bound on the tail distribution
of Class ¢ backlog. To obtain a rigorous upper bound on
Pr{Qi(r) > q], recall that the Chernoff bound for a random
variable Y is

Pr[Y > y] < e ™E[Y], V8 >0. (16)
In particular, for Q;(-) in (14), this gives
PriQi(t) > qi
i1
< Pr|Ai(0,7) 4+ 4 ZAJ'(O,T) > q; + i C1
j=1
i-1
< e MO NN, 7) [ Mi(if, ) (17)
j=1

where M;(-) is given in (8) and (9). Note that (17) holds true
for any positive value of #. In order to get a tight bound on
the tail distribution, we need to choose the € that minimizes the
right-hand side (RHS) of (17), i.e.,

PriQi(t) > qi

1—1
: —60(q:+9:CT) 7 1. (ol
<jnf e Ml(e,f)Hle(w,r) (18)
i
| ]

We next derive the upper bound on the delay distribution for
each class. Again, consider a busy period of the GPS queue
starting at time O during which Class : is continuously back-
logged. Let ¢t denote the time interval after which the cumulative
service received by Class ¢ becomes equal to or larger than the
cumulative arrivals of Class ¢ at time 7. For traffic enqueued
at time instance 7 within the busy period, the corresponding
queueing delay is [11]

D;(t) =min{t: ¢t > 0and 4;(0,7) < S;(0,7+1)}. (19)

Equation (19) applies to the class of first-come-first-serve
(FCFES) systems, to which GPS queues belong.

For a given delay value d; for Class 2, delay viola-
tion event occurs when there exists any traffic unit ex-
periencing a delay larger than the delay value. That is,
min{¢ : ¢ > 0and A4,(0,7) < S;(0,7 +¢)} > d;, or

A;(0,7) > S;(0,7 + d;). (20)

Theorem 2: Given a GPS server with a service capacity C' that
serves N traffic classes { A1, Aa, - - -, An} satisfying Properties
(P1)-(P4). Assume that Zfil p; < C and a feasible ordering

with respectto {¢1, 2, - - -, dn } and {p1, p2,- - -, pn }. Forany
time instance 7 in a busy period and any delay value d; > 0

Ci
<inf Je=fP Ol

T i)
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i—1 C

<1111

3
j=1k=1

Pik(T+di) ( ypa (r4d;)
1 T E———— gk 7 _1
+ A;kk(T-i-dl) (6 )

(21
Proof: From (20), we have

Pr [DZ(T) Z dz] = Pr [A,i(O,T) Z Si(o,’?’ + d,)] . (22)

Inserting (13) into (22), we have

Pr [Dl(’r) Z dl]
i—1
< Pr|A0,7) + i Y Aj(0,7 +di) > i C(r + dy)
Jj=1
i—1
< 6_0¢iC(T+di)Mi(9,T) H Mj(l/}ie,’r + dl)

(23)

J=1

C. Practical Implications

Letting @); be the steady state random variable for the backlog
of Class ¢, we have Pr{Q; > ¢;} < supg,p{Pr[Qi(r) >
qi]}- If Class i sessions require their buffer overflow probability
be less than or equal to ¢; for the corresponding buffer size g;,
then the schedulability condition for Class ¢ sessions is

sup {Pr[Qi(7) > ]} < e
0<T<B

(24)

where B is the busy period bound [3]. For admission control
test, the above inequality and Theorem 1 can be applied to com-
pute the corresponding loss probability for a given ¢;. If the
computed probability is less than ¢;, then the flows are admis-
sible.

Similarly, let D; be the steady state random variable for Class
i delay. We have Pr{D; > d;} < supg.,.p{Pr[D;(T) >
d;]}. If Class i sessions require their delay violation probability
be less than or equal to ¢; for the corresponding delay value d;,
then the schedulability condition for Class ¢ sessions is

sup {Pr[D;(t) > d;]} <e;.
0<T<B

(25)

An admission control test based on delay requirements can be
conducted in a similar fashion using the above inequality and
Theorem 2. For classes with both loss and delay requirements,
the flows are admissible only when both requirements are satis-
fied.

The RHS of (15) and (21) are in a product form, which
can be further simplified. Take (15) for example. By taking
logarithms on both sides of (17), we can easily convert the
RHS of (17) to the summation form. Therefore, increases
in number of classes or in number of flows in a class only
cause an increased number of terms in the summation, each
having a form of log[1 4 (p; x7/A% . (7))(e?40+(T) — 1)]. Let
Fi(0) = log Pr[Q;(7) > qi]. We can further show that F;(6)
is convex with regard to 6, i.e., the second derivative of F;(f)
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is nonnegative. The optimal value for # can be easily obtained
by using, say, the sequential quadratic programming method,
which is computationally efficient due to its super-linear
convergence performance [12]. In many cases when a class
consists of homogeneous sources, the computation can be
further simplified [see (9)].

Our proposed scheme focuses on deterministically regulated
multimedia traffic flows. There are two possible scenarios with
regard to the coexistence of multimedia flows and nonmulti-
media flows. First, if the nonmultimedia flows are also regulated
and have QoS requirements, the network operator can set the
GPS assignments for the classes according to the service level
agreements, and the QoS of these classes can be guaranteed as
shown in Theorems 1 and 2. Such an example is presented in
Section IV. Second, if the nonmultimedia traffic is best-effort
and does not have any QoS guarantees, the network operator
could apply GPS to the QoS sessions, while letting the best-ef-
fort sessions use the residual service left by the QoS sessions
(i.e., an available-bit-rate type service).

This analysis involves three key factors that determine the
quality of received multimedia data (e.g., distortion of a re-
constructed video): data rate, delay, and loss. The data rate of
the multimedia flow is determined by the regulator used for the
multimedia flow, which is subsequently determined by the ser-
vice level agreement between the user and the network oper-
ator. The delay violation and buffer overflow probabilities can
be computed using Theorems 1 and 2. The QoS guarantees de-
livered by the proposed approach can be related to the appli-
cation layer multimedia quality by incorporating existing work
from the multimedia research community. For example, for a
video flow with average rate p, a distortion-rate model is devel-
oped in [13] as

w
P = Po

D =D+

+5-(1=p)-Pr(T>A)+k-p (26)

where Dy, w, pg, and « are video sequence/codec specific con-
stants, p is the loss probability of video packets, A is the de-
coding deadline, and Pr(7" > A) is the overdue probability.
The backlog and delay distribution presented in this paper can
be used to obtain a very good approximation for the received
video distortion by using this model.

IV. NUMERICAL RESULTS

In this section, we present a set of experiments to demon-
strate the performance of the proposed QoS bounds. The objec-
tive of this study is threefold: 1) to demonstrate the accuracy of
the proposed bounds by comparing with OPNET simulations;
2) to demonstrate how efficient the proposed scheme is in uti-
lizing network resources; and 3) to provide a comparison with
two representative existing schemes, including a deterministic
analysis-based approach [3] and a stochastic analysis-based ap-
proach [14].

A. Simulation Settings

We implement a GPS system using the OPNET Modeler. In
the experiments, we use four classes of sources as specified in
the IETF Diffserv architecture [2]. The four types of traffic used
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TABLE II
TRAFFIC SOURCE PARAMETERS
Avg. Rate  Peak Rate ~ GPS Weight
- (Kb/s) (Kb/s) bi
Class 1: on-off (Exponential) 230 1600 280
Class 2: on-off (Pareto) 520 2220 500
Class 3: Video Trace 1 773 2687 800
Class 4: Video Trace 2 1053 3150 1000

1e+00 T T T T 3

Class 1 (analysis) —+— 1

Class 1 (simulation) ===4--- ]

95% conf. Int. ——+— o

Class 3 (analysis) —e— -
Class 3 (simulation) ---e---

1e-01 |

°
A
g
a S oo 1
> 1e-02 | 95% conf. Int. * 5
=
8 1e-03
<]
o
2 1e-04
o
=
2
e} 1e-05
8
5 1e-06
[a)
1e_07 1 1 1 1 1
0 20 40 60 80 100 120
Queue Occupancy (Mbits)
(a)
1e+00 T T T T 3
Class 2 (analysis) —+— A
Class 2 (simulation) ---+-- ]
1e-01 | 95% conf. Int. ——+— 4

Class 4 (analysis) —e— -
Class 4 (simulation) ---e---

1e-02 95% conf. Int. =--x--- _

1e-03
1e-04
1e-05

1e-06

Buffer Overflow Probability Pr(Q>q)

1e-07 L L L !
0 20 40 60 80 100 120
Queue Occupancy (Mbits)
(b)

Fig. 2. Experiment 1: backlog distribution as a function of buffer size ¢ with
fixed average server utilization (¢ = 85.7%). (a) Classes 1 and 3. (b) Classes
2 and 4.

in the experiments, as well as the corresponding parameters,
are presented in Table II. More specifically, Class 1 consists
of on-off traffic sources. The sojourn time in the two states are
exponentially distributed with average on time = 100 ms and
average off time = 600 ms. Class 2 consists of on-off sources
with Pareto distributed sojourn times. The mean on and off times
are 100 ms and 325 ms, respectively. In the on state, these on-off
sources transmit data at their peak rates; in the off state, these
sources do not generate any traffic. Classes 3 and 4 sources use
MPEG-4 compressed video traces from the movie Jurassic Park
and a soccer game [15], respectively.

We choose these classes of sources to approximate a typical
combination of the Internet traffic. The first class of sources
generate short-range dependent (SRD) traffic, which is a good
model for Voice over IP. The last three classes of sources pro-

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 6, DECEMBER 2006

16400 f : : , .
1e-01 |
1e-02 |
1e-03 |

1e-04

/1 Class 1 (analysis) —+— 7
/ Class 1 (simulation) =-=+--- ]
! 95% conf. Int. —+— 1

1e-05 |

Buffer Overflow Probability Pr(Q>q)

1e-06 Class 3 (analysis) —e—
r Class 3 (simulation) ---&---- 1
F 95% conf. Int. +--x---1 1
1e-07 : ' '
0.75 0.8 0.85 0.9 0.95 1
Average Server Utilization
(a)

1e+00 F T T D
1e-01 —
1e-02 |
1e-03 |

1e-04 |

/
/ Class 2 (analysis) —+— T
Class 2 (simulation) ---+-- 1
95% conf. Int. ——+—
Class 4 (analysis) —e— 4
Class 4 (simulation) ---e--- 1
95% conf. Ilnt. ——

0.95 1

1e-05 |

Buffer Overflow Probability Pr(Q>q)

1e-06 |

0.85 0.9
Average Server Utilization

(b)

Fig. 3. Experiment 1: backlog distribution as a function of average server uti-
lization g with fixed buffer size (¢ = 50 Mbits). (a) Classes 1 and 3. (b) Classes
2 and 4.
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duce long-range dependent (LRD) and self-similar traffic in the
aggregate. Class 2 sources are used to model traditional Internet
data applications such as FTP and web traffic, and Class 3 and
4 sources are used to model multimedia applications such as
video streaming and video teleconferencing. Traffic from each
of the sources is regulated by ten leaky buckets before entering
the network. We implemented a high-speed GPS server with a
capacity C ranging from 0.8 to 1.0 Gb/s. The rates of the sources
are chosen to saturate such a high bandwidth link. In most cases
examined, there are several hundred sources within each class,
indicating that the proposed approach can easily handle a large
number of sessions.

Each simulation lasts for 200 simulated seconds. During the
simulations, each source randomly chooses a starting time and
begins to generate traffic after that. For the figures presented in
this section, each point is the average of ten simulation runs with
different random traffic scenarios (e.g., random session starting
time). We provide 95% confidence intervals for the points in
Figs. 2-5, which are plotted as error bars in these figures.

B. Experiment 1: Backlog and Delay Bounds

In this experiment, we compute the analytical bounds on the
tail distributions of backlog and delay as given in (15) and (21)
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Fig. 4. Experiment 1: delay distribution as a function of delay requirement d
with fixed average server utilization (¢ = 85.7%). (a) Class 1 and Class 3. (b)
Class 2 and Class 4.

and compare them with OPNET simulation results. For the re-
sults reported in this subsection, we consider a GPS system
with four classes, each having 300 flows. The source parame-
ters and the GPS weights for the classes {¢; }i=1.2,3 4 are given
in Table II. The average server utilization is defined as y =
Z?:l pi/C, where p; = Zizl pix is the long-term average
rate of Class ¢ aggregate traffic.

The results of these experiments are plotted in Figs. 2-5.
Fig. 2 shows the tail distribution of buffer occupancy as a func-
tion of buffer size g, where the average server utilization is fixed
at u = 85.7%. Fig. 3 plots the tail distribution of buffer occu-
pancy as a function of the average server utilization y, which is
varied by changing the the server capacity C (note that a large C'
will give a smaller . since the number of sources in each class
is fixed). The buffer size is fixed at ¢ = 50 Mbits for all the
classes. These allow us to examine the tightness of the analytical
bounds and their performance in utilizing the server capacacity.

From Figs. 2 and 3, we make the following observations.
First, our derived bounds on backlog distribution given in (15)
are tight upper bounds of those obtained from the simulations.
For example, in Fig. 2(a), when ¢ = 50 Mbits, the Class 1
backlog bound computed from (15) and that obtained from sim-
ulation are 2.78 x 10~% and 1 x 10~%, respectively. The optimal
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Fig. 5. Experiment 1: delay distribution as a function of server utilization g
with fixed delay requirement (d = 50 ms). (a) Class 1 and Class 3. (b) Class 2
and Class 4.

values that achieve the delay bound are §* = 2 x 10~® and
7" = 21.7058 s.

Second, all classes yield better performance as buffer size
is increased (in Figs. 2) or average server utilization is de-
creased (in Figs. 3), i.e., as more network resources, either
being buffer or bandwidth, are allocated. More precisely, as
more buffer is allocated, the buffer overflow probabilities in
Fig. 2 first decrease quickly; as the buffer size further in-
creases, for classes 2 to 4 the decreases in buffer overflow
probabilities get smaller and the curves becomes more flat
(indicating heavy tails, a distinguishing trait of LRD traffic).
As the server capacity increases in Fig. 3, on the other hand, all
the buffer overflow probability curves drop drastically, except
for extremely high server utilizations (around 95%) when the
server is saturated. This clearly demonstrates that for LRD
traffic, bandwidth provisioning is more effective in improving
its queueing performance than buffer provisioning. Third, in
Fig. 3, when u > 88%, Classes 2, 3, and 4 perform poorly
as compared with Class 1. This is because these LRD sources
are highly bursty, and more importantly, the burstiness does
not decrease with aggregation. On the other hand, when the
number of Class 1 sources increases, the aggregate Class 1
traffic gets smoothed out due to the SRD property. Thus, Class
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1 performance is better than the remaining three LRD classes
in the high-bandwidth utilization region.

To demonstrate the performance of Theorem 2, we present the
analytical and simulation results on the delay bound in Figs. 4
and 5, as functions of each class’ delay requirement d; and the
average server utilization p, respectively. Similar observations
can be made from these figures. First, the analytical delay distri-
bution upper bounds the corresponding simulation curve for all
the classes. In addition, these delay bounds are tight. In Fig. 4(a),
when the server utilization is 1 = 85.7% and the delay require-
ment is d = 50 ms, the Class 1 delay violation probability is
1.66 x 1073 and the simulated delay violation probability is
8 x 10~*. The optimal values for § and 7 are §* = 2 x 1078
and 7% = 21.7058 s, respectively.

In addition, better performance is observed as the delay
bound is increased as in Fig. 4 (i.e., the delay requirement is
relaxed), or as the average server utilization is decreased as
in Fig. 5 (i.e., more capacity is available for each class). We
also observe that bandwidth provisioning is more effective in
improving the delay performance of the classes than buffer
provisioning, since the curves in Fig. 5 are much more steep
than those in Fig. 4. Finally, when the server is saturated, the
delay performance of Class 1 is much better than that of the
other three LRD classes (see Fig. 5). For network operation, it
is important to adopt effective admission control schemes to
prevent the server from being overloaded.

C. Experiment 2: Admissible Region

The admissible region of a GPS system is defined as the num-
bers of admissible flows of the classes whose buffer overflow
and delay requirements are satisfied. By definition, the admis-
sible region indicates the effectiveness of traffic classes in ex-
ploiting the GPS resource sharing capability.
Consider a GPS server with a capacity of 900 Mb/s serving
four traffic classes (as listed in Table II) with a mixture of buffer
overflow and delay requirements. For an easier presentation, we
fixed the number of Class 1 sources at 300, which serves as
background traffic. All the classes require statistical QoS guar-
antees as follows.
» Class 1 requires statistical service with a loss requirement
Pr[Q; > 30 Mbits] < 102,

» Class 2 requires statistical service with a loss requirement
Pr[Q2 > 50 Mbits] < 1074,

» Class 3 requires statistical service with a delay requirement
Pr[Ds > 30 ms] < 1073,

» Class 4 requires statistical service with a delay requirement
Pr[Dy > 50 ms] < 1074,

We determine the admissible region for the 4-class GPS
system using Theorems 1 and 2. For comparison, we also
obtain the admissible region using the following four schemes.

* Peak Rate Allocation: admission control based on the peak

rate of each source. It is well-known that peak rate allo-
cation provides deterministic QoS guarantees, while being
an “overkill” for multimedia applications. The number of
sources that can be supported with peak rate allocation
serves as a lower bound for any practical admission con-
trol scheme.
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Fig. 6. Experiment 2: the admissible region for Classes 2, 3, and 4 in a four-
class GPS system. The number of Class 1 sources is fixed at 300.

e Average Rate Allocation: admission control based on the
average rate of each source. Except for constant bit rate
traffic, average rate allocation leads to infinite delays and
instability. The admissible region achieved by average rate
allocation is an upper bound for any practical admission
control scheme.

* A Deterministic Approach: we perform admission control
tests for deterministic QoS guarantees using (14) and (20)
with deterministic envelopes A*(-) (instead of A(-)). This
is equivalent to the deterministic analysis in [3].

* A Stochastic Approach: we perform admission control test
based on the analysis in [14] (called GPS-EM throughout
this paper). In this method, we calculate the required band-
width for each source and then apply the single-node ad-
mission control test as described in Sections III and IV of
this paper.

The resulting admissible regions are plotted in Fig. 6. As ex-
pected, the admissible regions of peak rate allocation and av-
erage rate allocation bound the admissible regions of the other
three schemes. Specifically, the average rate allocation always
achieves a 100% server utilization. We also observe that peak
rate allocation is highly conservative, with extremely low server
utilizations (around 20% for all the points examined). This is be-
cause statistical multiplexing gain is not exploited at all.

The admissible region obtained by our analysis is the largest
among the remaining three schemes, as shown in Fig. 6. It
is very close to that obtained by average rate allocation. The
server utilization is between 85%—-89% for all the points ex-
amined. This demonstrates the tightness of our backlog and
delay bounds, especially when the number of sources is large.
Consequently, our approach is able to fully exploit the statistical
multiplexing gain of multiclass GPS sharing. The GPS-EM
admissible region is much larger than that of the deterministic
approach, due to the fact the statistical multiplexing gain is
explioted in GPS-EM.

Many more Class 4 sources are admitted using Theorems 1
and 2, as compared with GPS-EM and the deterministic ap-
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proach. For example, our approach admits 300 Class 1 sources,
180 Class 2 sources, 60 Class 3 sources, and 540 Class 4 sources
in the experiment, achieving a server utilization of 87%. The
deterministic approach admits 300 Class 1 sources, 180 Class 2
sources, 50 Class 3 sources, and 60 Class 4 sources, achieving
a server utilization of 29%. The GPS-EM scheme admits 300
Class 1 sources, 180 Class 2 sources, 60 Class 3 sources, and
320 Class 4 sources, achieving a server utilization of 61%. The
proposed scheme achieves a 58% improvement over the deter-
ministic approach, and a 26% improvement over GPS-EM in
server utilization.

V. RELATED WORK

The exact analysis of a GPS system is nontrivial, since the
service rate a class receives is coupled with the backlog status
and instant arriving rates of all other classes. Over the years,
GPS has been studied under various traffic characterizations,
such as leaky bucket regulated sources [3], [14], exponential
bounded burstiness (EBB) sources [4], Markov modulated
fluid process (MMFP) sources [7], Gaussian traffic sources
[5], heavy-tailed sources [6], [16], [17], and mixed light- and
heavy-tailed sources [18]. In addition to the Internet, GPS has
been used in QoS provisioning in CDMA cellular networks
[19]. These papers provide great insights into the behavior of
GPS servers under bursty traffic flows. One of the most widely
used technique in GPS analysis is the notion of feasible or-
dering [3] (with its extension of feasible partitioning [4]). With
this technique, a GPS system can be decomposed into a set of
separate FIFO queues from which performance bounds can be
derived. We also used this technique in the present paper.

As discussed, the bounds obtained by deterministic GPS
analysis are very conservative, since worst-case analysis is
employed [3], while the existing statistical GPS bounds are not
amenable for traffic regulation, monitoring, and enforcement
[4]-[7]. In addition, the asymptotic performance bounds found
in prior work (e.g., [6]) are only accurate for very large buffer
sizes. Although shedding great insight on the GPS behavior
for long-tailed sources, such bounds may not be applicable
for multimedia traffic, where the generally tight end-to-end
delay requirements prohibit the use of very large buffers in
the intermediate routers. Finally, the analysis in [7] has the
“state-explosion” problem, making it unsuitable for handling a
large number of sources.

These observations motivated us to investigate the behavior
of a GPS server under regulated multimedia traffic flows, but in
a stochastic setting. As a result, our approach has the advantage
of being as amenable to implementation and policing as deter-
ministic GPS, and is capable of achieving the high resource uti-
lizations achievable under statistical GPS analysis. In addition,
our analytical approach is scalable. That is, it can easily handle a
large number of sessions and achieve tight bounds, as illustrated
in Section IV. It is therefore a practical and efficient approach
for supporting regulated multimedia traffic in the Internet.

VI. CONCLUSIONS

In this paper, we studied the problem of QoS provisioning for
regulated multimedia applications using a GPS server. Based
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on the general assumptions that the flows are independent and
that each flow is deterministically regulated, we derived tight
backlog and delay bounds for the GPS system via examining
the sample path behavior of the classes and explore the inherent
feasible order among the classes. We also demonstrated the ac-
curacy and merits of our approach via experiments and simu-
lations with MPEG-4 video traces and synthesized SRD/LRD
traffic. The derived bounds are very close to the simulation re-
sults, and achieve larger admissible regions as compared with
a deterministic analysis-based approach and a stochastic anal-
ysis-based approach. The framework presented in this paper is
quite general and practical for supporting multimedia applica-
tions in the Internet.

REFERENCES

[1] R.Braden, D. Clark, and S. Shenker, Integrated Services in the Internet
Architecture: An Overview, Jun. 1994, IETF RFC 1633.

[2] S. Blake et al., An Architecture for Differentiated Service, Dec. 1998,
IETF RFC 2475.

[3] A. K. Parekh and R. G. Gallager, “A generalized processor sharing

approach to flow control in integrated services networks: the single-

node case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344-357, Jun.

1993.

Z.-L. Zhang, D. Towsley, and J. Kurose, “Statistical analysis of the

generalized processor sharing scheduling discipline,” IEEE J. Select.

Areas Commun., vol. 13, no. 6, pp. 1071-1080, Aug. 1995.

[5]1 P. Mannersalo and I. Norros, “GPS schedulers and gaussian traffic,” in

Proc. IEEE INFOCOM 2002, New York, Jun. 2002, pp. 1660—-1667.

S. Borst, O. Boxma, and P. Jelenkovie, “Generalized processor sharing

with long-tailed traffic sources,” in Proc. ITC-16, Edinburgh, U.K., Jun.

1999, pp. 345-354.

F. L. Presti, Z.-L. Zhang, and D. Towsley, “Bounds, approximations

and applications for a two-queue GPS system,” in Proc. IEEE IN-

FOCOM, San Francisco, CA, Mar. 1996, pp. 1310-1317.

Cisco Systems, Inc., QC: Cisco IOS Release 12.0 Quality of Service

Solutions Configuration Guide, Cisco IOS Documentation.

J. C. R. Bennett and H. Zhang, “ WF2Q: worst-case fair weighted

fair queueing,” in Proc. IEEE INFOCOM’96, San Francisco, CA, Mar.

1996, pp. 120-128.

R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn, “Statis-

tical service assurances for traffic scheduling algorithms,” IEEE J. Se-

lect. Areas Commun., vol. 18, no. 12, pp. 2651-2664, Dec. 2000.

[11] H. Sariowan, R. Cruz, and G. Polyzos, “Scheduling for quality of ser-
vice guarantees via service curves,” in Proc. IEEE ICCCN 1995, Las
Vegas, NV, Sep. 1995, pp. 512-520.

[12] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-

ming: Theory and Algorithms, 2nd ed. New York: Wiley, 1993.

K. Stuhlmuller, N. Farberand, M. Link, and B. Girod, “Analysis

of video transmission over lossy channels,” IEEE J. Select. Areas

Commun., vol. 18, no. 6, pp. 1012-1032, Jun. 2000.

A. Elwalid and D. Mitra, “Design of generalized processor sharing

schedulers which statistically multiplex heterogeneous QoS classes,”

in Proc. IEEE INFOCOM’99, New York, Mar. 1999, pp. 1220-1230.

F. Fitzek and M. Reisslein, MPEG-4 and H.263 Traces for Network

Performance Evaluation (Extended Version), Dept. Elect. Eng., Ger-

many, Techn. Univ. Berlin, Berlin, Germany, Tech. Rep. TKN-00-06,

Oct. 2000.

[16] F. M. Pereira, N. L. S. Fonseca, and D. S. Arantes, On the Perfor-
mance of Generalized Processor Sharing Servers Under Long-Range
Dependent Traffic. Inst. Comput. Sci., State Univ. Campinas, Tech.
Rep. IC-01-11, Oct. 2001.

[17] X.Yu,I.L.-J. Thng, Y.Jiang, and C. Qiao, “Queueing processes in GPS

and PGPS with LRD traffic inputs,” IEEE/ACM Trans. Netw., vol. 13,

no. 3, pp. 676-689, Jun. 2005.

S. Borst, M. Mandjes, and M. van Uitert, “Generalized process sharing

with light-tailed and heavy-tailed input,” IEEE/ACM Trans. Netw., vol.

11, no. 5, pp. 821-834, Oct. 2003.

[19] L. Xu, X. Shen, and J. W. Mark, “Fair resource allocation with guaran-
teed statistical QoS for multimedia traffic in wideband CDMA cellular
networks,” IEEE Trans. Mobile Comput., vol. 4, no. 2, pp. 166-177,
Mar./Apr. 2005.

[4

=

[6

—

[7

—

[8

—

[9

—

[10

[13

[14

[15

[18



1218

Chaiwat QOottamakorn (S’98) received the B.S.
degree in electrical engineering from Chulalongkorn
University, Bangkok, Thailand, in 1993, and the
M.S. and Ph.D. degrees in electrical engineering
from Polytechnic University, New York, NY, in 1995
and 2001 respectively.

Since 2001, he has been with the Institute of Indus-
trial and Resources Technology, Walailak University,
Nakhon Si Thammarat, Thailand, where he is cur-
rently an Assistant Professor. His areas of research
encompass Internet technologies, mobile communi-
cations, quality of services, network servers, and multimedia systems.

Shiwen Mao (S’99-M’04) received the B.S. and
M.S. degrees in electrical engineering from Ts-
inghua University, Beijing, China, in 1994 and 1997,
respectively, the M.S. degree in system engineering
in 2000, and the Ph.D. degree in electrical and com-
puter engineering in 2004, both from Polytechnic
University, Brooklyn, NY.

He was a Research Member at the IBM China Re-
search Lab from 1997 to 1998. He spent the summer
of 2001 as a Research Intern at Avaya Labs-Research
and has been a Research Scientist in the Department
of Electrical and Computer Engineering (ECE) at Virginia Polytechnic Institute
and State University (Virginia Tech), Blacksburg, for over two years. Currently,
he is an Assistant Professor in the Department of ECE at Auburn University,
Auburn, AL. His research interests include cross-layer design, optimization,
and cooperative networking in multi-hop wireless networks, and multimedia
communications in wired and wireless networks. He is the coauthor of TCP/IP
Essentials: A Lab-Based Approach (Cambridge, U.K.: Cambridge University
Press, 2004).

Dr. Mao is a co-recipient of the 2004 IEEE Communications Society Leonard
G. Abraham Prize in the Field of Communications Systems.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 6, DECEMBER 2006

Shivendra S. Panwar (S’82-M’85-SM’00) re-
ceived the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Kanpur, in
1981 and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Massachusetts, Amherst, in 1983 and 1986, respec-
tively.

He is a Professor in the Electrical and Computer
Engineering Department, Polytechnic University of
New York (now Polytechnic University), Brooklyn,
NY. He is currently the Director of the New York
State Center for Advanced Technology in Telecommunications (CATT). He
spent the summer of 1987 as a Visiting Scientist at the IBM T. J. Watson Re-
search Center, Yorktown Heights, N'Y, and has been a Consultant to AT&T Bell
Laboratories, Holmdel, NJ. His research interests include the performance anal-
ysis and design of networks. He is a co-editor of two books, Network Man-
agement and Control, Vol. II (New York: Plenum, 1994) and Multimedia Com-
munications and Video Coding (New York: Plenum, 1996) and co-author of a
textbook, TCP/IP Essentials: A Lab-Based Approach (Cambridge, U.K.: Cam-
bridge University Press, 2004). His current work includes video systems over
peer-to-peer networks, switch performance, and wireless networks.

Dr. Panwar has served as the Secretary of the Technical Affairs Council of
the IEEE Communications Society (1992-1993) and is a member of the Tech-
nical Committee on Computer Communications. He is a co-recipient of the 2004
IEEE Communications Society Leonard G. Abraham Prize in the Field of Com-
munications Systems.



